જો બે વર્તૂળો $x^2 + y^2 + 2x - 4y - 4 = 0$ અને $x^2 + y^2 + 2x - 4y - 20 = 0$ ની વચ્ચેનું વર્તૂળ $x^2 + y^2 + 2x - 4y - k = 0$ હોય, તો$k = ……..$
$8$
$9$
$11$
$12$
વર્તૂળો $x^2 + y^2+ 2x - 2y + 1 = 0$ અને $x^2 + y^2- 2x - 2y + 1 = 0$ એકબીજાને ક્યાં આગળ સ્પર્શેં ?
વર્તુળ $\mathrm{C}$ એ રેખા $\mathrm{x}=2 \mathrm{y}$ ને બિંદુ $(2,1)$ આગળ સ્પર્શે છે અને વર્તુળ $C_{1}: x^{2}+y^{2}+2 y-5=0$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ એવી રીતે છેદે છે કે જેથી $\mathrm{PQ}$ એ વર્તુળ $\mathrm{C}_{1}$ નો વ્યાસ થાય છે તો વ્યાસ $\mathrm{C}$ મેળવો.
$P$ એ એક બિંદુ $(a, b)$ કે જે પ્રથમ ચરણમાં આવેલ છે જો બે વર્તુળો બિંદુ $P$ માંથી પસાર થાય અને બંને અક્ષોને કાટકોણ ખૂણે સ્પર્શે તો
બે સમકેન્દ્રીત વર્તૂળોમાંથી એક નાના વર્તૂળનું સમીકરણ $x^2 + y^2 = 4$ છે. જો પ્રત્યેક વર્તૂળ રેખા $x + y = 2$ પર અંત:ખંડ બનાવે અને બે વર્તૂળો વચ્ચે બનતો અંત:ખંડ $1$ હોય, તો મોટા વર્તૂળનું સમીકરણ :
બિંદુ $(1, 1) $ માંથી અને વર્તૂળો $x^2 + y^2 = 6$ અને $x^2 + y^2 -6x + 8 = 0$ ના છેદ બિંદુમાંથી પસાર થતા વર્તૂળનું સમીકરણ....