બિંદુઓ $(0,0),(1,0)$ માંથી પસાર થતા અને વર્તુળ $x^2+y^2=9$ ને સ્પર્શતા એક વર્તુળનું કેન્દ્ર $(h, k)$ છે. તો કેન્દ્ર $(h, k)$ ના યામોની તમામ શક્ય કિંમતો માટે $4\left(\mathrm{~h}^2+\mathrm{k}^2\right)=$ ..........
$1$
$2$
$6$
$9$
અહી વર્તુળ $c_{1}: x^{2}+y^{2}-2 x-$ $6 y+\alpha=0$ નું રેખા $y=x+1$ ની સાપેક્ષે પ્રતિબિંબ $c_{2}: 5 x^{2}+5 y^{2}+10 g x+10 f y +38=0$ છે. જો $r$ એ વર્તુળ $c _{2}$ ત્રિજ્યા હોય તો $\alpha+6 r^{2}$ ની કિમંત મેળવો.
એક વર્તુળ એ વર્તુળો $x^{2}+y^{2}-6 x=0$ અને $x^{2}+y^{2}-4 y=0$ ના છેદબિંદુઓ માંથી પસાર થાય તથા તેનું કેન્દ્ર રેખા $2 x-3 y+12=0$ આવેલ હોય તો તે વર્તુળ ........ બિંદુ માંથી પસાર થશે
વર્તૂળ $x^2 + y^2 = 1 $ સાથે સંકળાયેલ અને અંદરથી સ્પર્શતા $(4, 3)$ કેન્દ્રવાળા વર્તૂળનું સમીકરણ....
જો ચલિત રેખા $3x + 4y -\lambda = 0$ એવી મળે કે જેથી બે વર્તુળો $x^2 + y^2 -2x -2y + 1 = 0$ અને $x^2 + y^2 -18x -2y + 78 = 0$ એ વિરુધ્ધ બાજુએ રહે તો $\lambda $ ની શક્ય કિમતો .............. અંતરાલમાં મળે
જો વર્તૂળો $ x^2 + y^2 + 2x + 2ky + 6 = 0$ અને $ x^2 + y^2 + 2ky + k = 0 $ લંબરૂપે છેદે, તો $k = ..........$