ધારો કે વર્તૂળો $x^2 + (y - 1)^2 = 9, (x - 1)^2 + y^2 = 25$ છે, કે જેથી
આમાંથી પ્રત્યેક વર્તૂળ બીજાની બહારની બાજુએ આવેલું છે.
આમાંથી એક વર્તૂળ સંપૂર્ણ પણે બીજાની અંદર આવેલું છે.
આ વર્તૂળો એકબીજાને સ્પર્શેં છે.
તેઓ બે બિંદુઓમાં છેદે છે.
જો ચલિત રેખા $3x + 4y -\lambda = 0$ એવી મળે કે જેથી બે વર્તુળો $x^2 + y^2 -2x -2y + 1 = 0$ અને $x^2 + y^2 -18x -2y + 78 = 0$ એ વિરુધ્ધ બાજુએ રહે તો $\lambda $ ની શક્ય કિમતો .............. અંતરાલમાં મળે
જો સમાન $'a'$ ત્રિજ્યા વાળા અને $(2, 3)$ અને $(5, 6)$ આગળ કેન્દ્ર વાળા વર્તૂળો લંબછેદી હોય તો $a$ મેળવો.
જો બે વર્તૂળો $ 2x^2 + 2y^2 -3x + 6y + k = 0$ અને $x^2 + y^2 - 4x + 10y + 16 = 0$ લંબરૂપે છેદે, તો $ k$ નું મૂલ્ય....
કયા બિંદુમાંથી વર્તૂળો $x^{2} + y^{2} - 8x + 40 = 0, 5x^{2} + 5y^{2} - 25 x + 80 = 0 $ અને $x^{2} + y^{2} - 8x + 16y + 160 = 0 $ પર દોરેલા સ્પર્શકોની લંબાઈ સમાન રહે?
જો વર્તુળો ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ અને ${x^2} + {y^2} + 2ky + k = 0$ લંબ્ચ્છેદી હોય તો $k$ મેળવો.