કયા બિંદુમાંથી વર્તૂળો $x^{2} + y^{2} - 8x + 40 = 0, 5x^{2} + 5y^{2} - 25 x + 80 = 0 $ અને $x^{2} + y^{2} - 8x + 16y + 160 = 0 $ પર દોરેલા સ્પર્શકોની લંબાઈ સમાન રહે?

  • A

    $\left( {8,\,\,\frac{{15}}{2}} \right)$

  • B

    $\left( { - 8,\,\,\frac{{15}}{2}} \right)$

  • C

    $\left( {8,\,\, - \frac{{15}}{2}} \right)$

  • D

    એકપણ નહિ

Similar Questions

વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \alpha = 0$ પરના કોઈપણ બિંદુ પરથી વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \beta = 0$ પર દોરેલ સ્પર્શકની લંબાઈ :

બિંદુ  $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.

  • [IIT 1988]

વર્તૂળ $x^2 + y^2 = 4$ નો બિંદુ $P\,\,\left( {\sqrt 3 ,\,\,1} \right)$આગળ $PT$ સ્પર્શક દોર્યો. $PT$ ને લંબ સુરેખા $L$ એ વર્તૂળ $(x - 3)^2+ y^2 = 1$ નો સ્પર્શક છે. બે વર્તૂળોનો સામાન્ય સ્પર્શક .....

$x^2 + y^2 - 4x - 6y - 21 = 0$ અને $3x + 4y + 5 = 0$ ના છેદબિંદુમાંથી અને બિંદુ $(1, 2)$ માંથી પસાર થતા વર્તૂળનું સમીકરણ :

જો વર્તૂળ $x^{2} + y^{2} = 10x$  ની જીવા $y = 2x $ હોય, તો જે વર્તૂળનો વ્યાસ આ જીવા હોય તે વર્તૂળનું સમીકરણ.....