વર્તૂળ $x^2 + y^2 = 1 $ સાથે સંકળાયેલ અને અંદરથી સ્પર્શતા $(4, 3)$ કેન્દ્રવાળા વર્તૂળનું સમીકરણ....
$x^2 + y^2 + 8x - 6y + 9 = 0$
$x^2 + y^2 - 8x + 6y + 9 = 0$
$x^2 + y^2 + 8x - 6y 11 = 0$
$x^2 + y^2 - 8x + 6y - 11 = 0$
વર્તૂળ $ x^2 + y^2 - 2x - 1 = 0 $ અને $x^2 + y^2 - 2y - 7 = 0 $ના સામાન્ય સ્પર્શકોની સંખ્યા.....
જો વર્તુળો ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ અને ${x^2} + {y^2} + 2ky + k = 0$ લંબ્ચ્છેદી હોય તો $k$ મેળવો.
રેખા $ x = 3 $ પરના કયા બિંદુએથી વર્તૂળ $ x^2 + y^2 = 8 $ પર દોરેલો સ્પર્શક કાટખૂણે હોય?
$x^2 + y^2 = 4$ અને $2x^2 + y^2 = 2$ નો સામાન્ય સ્પર્શક :
જો વર્તુળો ${x^2}\, + {y^2}\, - 16x\, - 20y\, + \,164\,\, = \,\,{r^2}$ અને ${(x - 4)^2} + {(y - 7)^2} = 36$ બે ભિન્ન બિંદુઓમાં છેદે તો ,