Consider $10$ observation $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$. such that $\sum_{i=1}^{10}\left(x_i-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$, where $\alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The $\frac{\beta}{\alpha}$ is equal to :

  • [JEE MAIN 2024]
  • A

    $2$

  • B

     $\frac{3}{2}$

  • C

     $\frac{5}{2}$

  • D

    $1$

Similar Questions

The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

If wrong item is omitted.

The standard deviation of $25$ numbers is $40$. If each of the numbers is increased by $5$, then the new standard deviation will be

If the variance of $10$ natural numbers $1,1,1, \ldots ., 1, k$ is less than $10 ,$ then the maximum possible value of $k$ is ...... .

  • [JEE MAIN 2021]

If $M.D.$ is $12$, the value of $S.D.$ will be

Let the observations $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ satisfy the equations, $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ and $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ If $\mu$ and $\lambda$ are the mean and the variance of the observations, $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ then the ordered pair $(\mu, \lambda)$ is equal to :

  • [JEE MAIN 2020]