વિચલ $x$ અને $u $ એ $u\,\, = \,\,\frac{{x\,\, - \,\,a}}{h}$વડે સંબંધીત હોય તો $\sigma_x$ અને $\sigma_u$ વચ્ચેનો સાચો સંબંધ $= …….$
$\sigma$ $_x = h $ $\sigma$ $_u$
$\sigma$ $_x = h +$ $\sigma$ $_u$
$\sigma$ $_u = h$ $\sigma$ $_x$
$\sigma$ $_u = h +$ $\sigma$ $_x$
જો પ્રત્યેક અવલોકન $x_{1}, x_{2}, \ldots ., x_{n}$ માં કોઈ ધન કે ત્રણ સંખ્યા $'a'$ ઉમેરવામાં આવે, તો સાબિત કરો કે વિચરણ બદલાતું નથી.
ધારો કે અવલોકનો $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો $\mu$ અને $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.
જો $5$ અવલોકનો $x_1 ,x_2 ,x_3 ,x_4 ,x_5$ નો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $3$ હોય તો $6$ અવલોકનો $x_1 ,x_2 ,.....,x_5$ અને $-50$ નો વિચરણ ......... થાય
$100$ અવલોકનોનો સરવાળો અને તેમના વર્ગોનો સરવાળો અનુક્રમે $400$ અને $2475$ છે ત્યારબાદ માલૂમ પડ્યું કે ત્રણ અવલોકનો $3, 4$ અને $5$ ખોટા અવલોકનોનો છે જો ખોટા અવલોકનોને કાઢી નાખવામાં આવે તો બાકી રહેલા અવલોકનોનો વિચરણ કેટલું થાય ?
$15$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્મે $12$ અને $3$ ભણવામાં આવ્યા છે. ફેરચકાસણી કરતા એવું માલુમ થાય છે કે એક અવલોકન $12$ ની જગ્યાએ $10$ વાંચવામાં આવ્યું હતું. જો સાચાં અવલોક્નોના મધ્યક અને વિચરણ અનુક્રમે $\mu$ અને $\sigma^2$ વડે દર્શાવાય, તો $15\left(\mu+\mu^2+\sigma^2\right)=$.........................