At a point $20\, cm$ from the centre of a uniformly charged dielectric sphere of radius $10\, cm$, the electric field is $100\, V/m$. The electric field at $3\, cm$ from the centre of the sphere will be.......$V/m$
$150$
$125$
$120$
$0$
The electric field at a distance $\frac{3R}{2}$ from the centre of a charged conducting spherical shell of radius $R$ is $E.$ The electric field at a distance $\frac{R}{2}$ from the centre of the sphere is
An isolated sphere of radius $R$ contains uniform volume distribution of positive charge. Which of the curve shown below, correctly illustrates the dependence of the magnitude of the electric field of the sphere as a function of the distance $r$ from its centre?
Obtain Gauss’s law from Coulomb’s law.
Consider a uniform spherical volume charge distribution of radius $R$. Which of the following graphs correctly represents the magnitude of the electric field $E$ at a distance $r$ from the centre of the sphere?
In the figure, a very large plane sheet of positive charge is shown. $P _{1}$ and $P _{2}$ are two points at distance $l$ and $2 \,l$ from the charge distribution. If $\sigma$ is the surface charge density, then the magnitude of electric fields $E_{1}$ and $E_{2}$ at $P _{1}$ and $P _{2}$ respectively are