Obtain Gauss’s law from Coulomb’s law.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Coulombian force acting between charges $Q+q$ is,

$\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{Q} q}{r^{2}}$

$\frac{\mathrm{F}}{\mathrm{Q}}=\frac{q}{4 \pi \varepsilon_{0} \cdot r^{2}}$

$\text { But, } \frac{\mathrm{F}}{\mathrm{Q}}=\overrightarrow{\mathrm{E}}$

[Force acting on Q charge placed in electric field of $q$ means intensity of electric field E.]

$\therefore \mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}}$

$\therefore \mathrm{E} \times 4 \pi r^{2}=\frac{q}{\varepsilon_{0}}$

$\therefore \int \mathrm{E} d s=\frac{q}{\varepsilon_{0}}, \text { where } 4 \pi r^{2}=d s$

As $\mathrm{E}$ and $d s$ are vectors,

$\int \overrightarrow{\mathrm{E}} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{0}}$ This is Gauss's law.

Similar Questions

Consider the force $F$ on a charge $'q'$ due to a uniformly charged spherical shell of radius $R$ carrying charge $Q$ distributed uniformly over it. Which one of the following statements is true for $F,$ if $'q'$ is placed at distance $r$ from the centre of the shell $?$

  • [JEE MAIN 2020]

Two infinitely long parallel conducting plates having surface charge densities $ + \sigma $ and $ - \sigma $ respectively, are separated by a small distance. The medium between the plates is vacuum. If ${\varepsilon _0}$ is the dielectric permittivity of vacuum, then the electric field in the region between the plates is

  • [AIIMS 2005]

A solid metallic sphere has a charge $ + \,3Q$. Concentric with this sphere is a conducting spherical shell having charge $ - Q$. The radius of the sphere is $a$ and that of the spherical shell is $b(b > a)$. What is the electric field at a distance $R(a < R < b)$ from the centre

Consider an atom with atomic number $Z$ as consisting of a positive point charge at the centre and surrounded by a distribution of negative electricity uniformly distributed within a sphere of radius $R$. The electric field at a point inside the atom at a distance $r$ from the centre is

Three infinitely long charged thin sheets are placed as shown in figure. The magnitude of electric field at the point $P$ is $\frac{x \sigma}{\epsilon_0}$. The value of $x$ is_____. (all quantities are measured in $SI$ units).

  • [JEE MAIN 2024]