The electric field at a distance $\frac{3R}{2}$ from the centre of a charged conducting spherical shell of radius $R$ is $E.$ The electric field at a distance $\frac{R}{2}$ from the centre of the sphere is 

  • [AIPMT 2010]
  • A

    $\frac{E}{2}$

  • B

    $E$

  • C

    $\frac{E}{3}$

  • D

    Zero

Similar Questions

Obtain the expression of electric field by ......

$(i)$ infinite size and with uniform charge distribution.

$(ii)$ thin spherical shell with uniform charge distribution at a point outside it.

$(iii)$ thin spherical shell with uniform charge distribution at a point inside it.

An early model for an atom considered it to have a positively charged point nucleus of charge $Ze$, surrounded by a uniform density of negative charge up to a radius $R$. The atom as a whole is neutral. For this model, what is the electric field at a distance $r$ from the nucleus?

Obtain the expression of electric field at any point by continuous distribution of charge on a  $(i)$ line $(ii)$ surface $(iii)$ volume.

The electric field $E$ is measured at a point $P (0,0, d )$ generated due to various charge distributions and the dependence of $E$ on $d$ is found to be different for different charge distributions. List-$I$ contains different relations between $E$ and $d$. List-$II$ describes different electric charge distributions, along with their locations. Match the functions in List-$I$ with the related charge distributions in List-$II$.

 List-$I$  List-$II$
$E$ is independent of $d$ A point charge $Q$ at the origin
$E \propto \frac{1}{d}$ A small dipole with point charges $Q$ at $(0,0, l)$ and $- Q$ at $(0,0,-l)$. Take $2 l \ll d$.
$E \propto \frac{1}{d^2}$ An infinite line charge coincident with the x-axis, with uniform linear charge density $\lambda$
$E \propto \frac{1}{d^3}$ Two infinite wires carrying uniform linear charge density parallel to the $x$-axis. The one along ( $y=0$, $z =l$ ) has a charge density $+\lambda$ and the one along $( y =0, z =-l)$ has a charge density $-\lambda$. Take $2 l \ll d$
  plane with uniform surface charge density

 

  • [IIT 2018]

Obtain Coulomb’s law from Gauss’s law.