Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively
$\frac{{ - \pi }}{2}$and $1$
$\frac{\pi }{2}$and $\sqrt 2 $
$0$ and $\sqrt 2 $
$\frac{\pi }{2}$and $1$
If a complex number $z$ statisfies the equation $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0,$ then $\left| z \right|$ is equal to
If $z=x+i y, x y \neq 0$, satisfies the equation $z^2+i \bar{z}=0$, then $\left|z^2\right|$ is equal to:
$|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|$ is possible if
If ${z_1}$ and ${z_2}$ are two complex numbers, then $|{z_1} - {z_2}|$ is
Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.
Match each entry in List-$I$ to the correct entries in List-$II$.
List-$I$ | List-$II$ |
($P$) $|z|^2$ is equal to | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ is equal to | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to | ($3$) $8$ |
($S$) $|z+1|^2$ is equal to | ($4$) $10$ |
($5$) $7$ |
The correct option is: