Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.

Match each entry in List-$I$ to the correct entries in List-$II$.

List-$I$ List-$II$
($P$) $|z|^2$ is equal to ($1$) $12$
($Q$) $|z-\bar{z}|^2$ is equal to ($2$) $4$
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to ($3$) $8$
($S$) $|z+1|^2$ is equal to ($4$) $10$
  ($5$) $7$

The correct option is:

  • [IIT 2023]
  • A

    $(\mathrm{A})(\mathrm{P}) \rightarrow(1)(\mathrm{Q}) \rightarrow(3)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(4)$

  • B

    $(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(1)(\mathrm{R}) \rightarrow(3) (S) \rightarrow (5)$

  • C

    $(P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (5) (S) \rightarrow (1)$

  • D

     $(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(3)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(4)$

Similar Questions

The sum of amplitude of $z$ and another complex number is $\pi $. The other complex number can be written

The amplitude of $\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$

If $arg\,z < 0$ then $arg\,( - z) - arg\,(z)$ is equal to

  • [IIT 2000]

Let $Z$ and $W$ be complex numbers such that $\left| Z \right| = \left| W \right|,$ and arg $Z$ denotes the principal argument of $Z.$

Statement $1:$ If arg $Z+$ arg $W = \pi ,$ then $Z = -\overline W $.

Statement $2:$ $\left| Z \right| = \left| W \right|,$ implies arg $Z-$ arg $\overline W = \pi .$

  • [AIEEE 2012]

Let $S$ be the set of all complex numbers $z$ satisfying $\left|z^2+z+1\right|=1$. Then which of the following statements is/are $TRUE$?

$(A)$ $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$  $(B)$ $|z| \leq 2$ for all $z \in S$

$(C)$ $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$  $(D)$ The set $S$ has exactly four elements

  • [IIT 2020]