If ${z_1}$ and ${z_2}$ are two complex numbers, then $|{z_1} - {z_2}|$ is
$ \ge \,|{z_1}| - |{z_2}|$
$ \le \,|{z_1}| - |{z_2}|$
$ \ge \,|{z_1}| + |{z_2}|$
$ \le \,|{z_2}| - |{z_1}|$
If $z_1$ and $z_2$ are two unimodular complex numbers that satisfy $z_1^2 + z_2^2 = 5,$ then ${\left( {{z_1} - {{\bar z}_1}} \right)^2} + {\left( {{z_2} - {{\bar z}_2}} \right)^2}$ is equal to -
$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $
Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.
${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to
The conjugate of complex number $\frac{{2 - 3i}}{{4 - i}},$ is