एक ऐसा क्रमित युग्म $(\alpha, \beta)$ जिसके लिये रैखिक समीकरण निकाय $(1+\alpha) x +\beta y + z =2$, $\alpha x +(1+\beta) y + z =3$, $\alpha x +\beta y +2 z =2$ का एकमात्र एक हल है

  • [JEE MAIN 2019]
  • A

    $(2, 4)$

  • B

    $(-3, 1)$

  • C

    $(-4, 2)$

  • D

    $(1, -3)$

Similar Questions

यदि $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (जहाँ $ x, y, z$ सभी शून्य नहीं हैं) का $x = 0$,$y = 0$,$z = 0$ के अतिरिक्त भी कोई हल है, तो  $a, b $ और $ c$  में सम्बन्ध है

  • [IIT 1978]

समीकरण  $\left| {\,\begin{array}{*{20}{c}}1&4&{20}\\1&{ - 2}&5\\1&{2x}&{5{x^2}}\end{array}\,} \right| = 0$ के मूल हैं

  • [IIT 1987]

यदि $A = \left[ {\begin{array}{*{20}{c}}\alpha &2\\2&\alpha\end{array}} \right]$ और $|{A^3}|$=125, तो $\alpha  = $

  • [IIT 2004]

$\theta \in(0, \pi)$ के मानों की संख्या, जिसके लिये रेखीय समीकरण निकाय $x+3 y+7 z=0$, $-x +4 y +7 z =0$, $(\sin 3 \theta) x +(\cos 2 \theta) y +2 z =0$ के अनिरर्थक हल हो, होगी

  • [JEE MAIN 2019]

सारणिकों का मान ज्ञात कीजिए :

$\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$