$(\alpha , \beta )$ ની કેટલી જોડ માટે સુરેખ સમીકરણો $\left( {1 + \alpha } \right)x + \beta y + z = 2$ ; $\alpha x + \left( {1 + \beta } \right)y + z = 3$ ; $\alpha x + \beta y + 2z = 2$ એ એકાકી ઉકેલ ધરાવે છે .
$(2, 4)$
$(-3, 1)$
$(-4, 2)$
$(1, -3)$
સમીકરણની સંહતિ $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$ ને શૂન્યતર ઉકેલ હોય, તો $\lambda $ ની કિમત મેળવો.
સમીકરણની સંહતિ $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ ના ઉકેલની સંખ્યા મેળવો.
સમીકરણ સંહતિને $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ યોગ્ય ઉકેલ હોય તેવા બધાજ $\lambda $ ઓનો ગણ . . . . . . છે.
નિશ્ચાયકની કિમત મેળવો : $\left|\begin{array}{ccc}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|$
$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R$ નું મહત્તમ મૂલ્ય ..... છે.