$R$ ત્રિજ્યાના અને અનંત લંબાઈના વિદ્યુતભાર વિતરણ વાળા નળાકારને લીધે વિદ્યુતક્ષેત્ર શોધો અને તેની પાસે રેખીય વિદ્યુતભાર ઘનતા $\lambda$ છે. જે તેના અક્ષથી અડધી ત્રિજ્યા આગળ મળે છે.
નીચે આપેલા સમાન રીતે વિધુતભારિત ઉદ્ભવતાં વિધુતક્ષેત્રનું સૂત્ર મેળવો.
$(i)$ અનંત સમતલ વડે
$(ii)$ પાતળી ગોળાકાર કવચને લીધે તેની બહારના બિંદુએ
$(iii)$ પાતળી ગોળાકાર કવચના લીધે તેની અંદરના બિંદુએ
ગોસના નિયમના ઉપયોગો જણાવો.
$\mathrm{R}$ ત્રિજ્યા ધરાવતા ગોળા પર વિજભારઘનતા $\rho$ છે.જો તેમાથી $\frac{\mathrm{R}}{2}$ ત્રિજ્યા ધરાવતો ભાગ કાપી નાખવામાં આવે તો $\frac{\left|\overrightarrow{\mathrm{E}}_{\mathrm{A}}\right|}{\left|\overrightarrow{\mathrm{E}}_{\mathrm{B}}\right|}$ નો ગુણોત્તર કેટલો થાય? જ્યાં $\overrightarrow{\mathrm{E}}_{\mathrm{A}}$ અને $\overrightarrow{\mathrm{E}}_{\mathrm{B}}$ બિંદુ $\mathrm{A}$ અને બિંદુ $\mathrm{B}$ પાસે વિદ્યુતક્ષેત્ર છે.
$10\,cm$ ત્રિજયા ધરાવતા સમાન રીતે વિદ્યુતભારીત અવાહક ગોળાથી $20\,cm$ અંતરે વિદ્યુતક્ષેત્ર $100\, V/m$ છે.તો કેન્દ્રથી $3 \,cm$ અંતરે વિદ્યુતક્ષેત્ર કેટલા .....$V/m$ થાય?