एक वैद्युत क्षेत्र $(6 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \mathrm{N} / \mathrm{C}$ से प्रदर्शित किया गया है। $\mathrm{YZ}$-तल में $30 \hat{\mathrm{i}}$ मी. $^2$ क्षेत्रफल से गुजरने वाला वैद्युत फ्लक्स ($SI$ मात्रक में) है :

  • [JEE MAIN 2024]
  • A

    $90$

  • B

    $150$

  • C

    $180$

  • D

    $60$

Similar Questions

गॉस प्रमेय का उपयोग करके, विद्युत द्विध्रुव के कारण विद्युत क्षेत्र की तीव्रता ज्ञात करने के लिए गोलीय गॉसीय पृष्ठ लेना सुविधा जनक नहीं है क्योंकि

निम्न चित्र में गॉसियन सतह $A$ द्वारा घेरे गये आवेशों के कारण इससे निर्गत फ्लक्स होगा (दिया है $q_1$ = $-14 \,nC$, $q_2$ = $78.85 \,nC$, $q_3$ = $-56 \,nC$)

धातु का बना एक ठोस गोला एक समांगी (Uniform) विद्युत क्षेत्र में रखा हुआ है। चित्र में दिखाई गई रेखाओं में से सही बल रेखा है

  • [IIT 1996]

गॉस नियम सत्य है यदि किसी आवेश के कारण विद्युत क्षेत्र दूरी $r$ के साथ निम्न प्रकार परिवर्तित हो

$z$-अक्ष के समांतर एक अनंत लम्बाई की पतली अचालक (non-conducting) तार पर एकसमान रेखीय आवेश घनत्व (uniform line charge density) $\lambda$ है। यह तार $R$ त्रिज्या वाले एक पतले अचालक गोलीय कोश (spherical shell) को इस प्रकार भेदता है कि आर्क (arc) $P Q$, गोलीय कोश के केंद्र $O$ पर $120^{\circ}$ का कोण बनाती है, जैसा कि चित्र में दर्शाया गया है। मुक्त आकाश का पराविधुतक (permittivity of free space) $\epsilon_0$ है। निम्नलिखित कथनों में से कौन सा (से) सही है (हैं)?

$(A)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{3} R \lambda / \epsilon_0$ है

$(B)$ विधुत क्षेत्र (electric field) का $z$-घटक ( $z$-component) कोश के पृष्ठ (surface) के सभी बिन्दुओं पर शून्य है

$(C)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{2} R \lambda / \epsilon_0$ है

$(D)$ विधुत क्षेत्र (electric field) कोश के पृप्ठ के सभी बिन्दुओं पर लम्बवत (normal) है

  • [IIT 2018]