Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
neither $(S1)$ and $(S2)$ is True
only $(S1)$ is True
only $(S2)$ is True
both $(S1)$ and $(S2)$ are True
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively
The contrapositive of $(p \vee q) \Rightarrow r$ is
If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is
$\left( { \sim \left( {p \vee q} \right)} \right) \vee \left( { \sim p \wedge q} \right)$ is logically equivalent to
Which of the following is the negation of the statement "for all $M\,>\,0$, there exists $x \in S$ such that $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$