$\left( { \sim \left( {p \vee q} \right)} \right) \vee \left( { \sim p \wedge q} \right)$ is logically equivalent to
$ \sim p$
$p$
$q$
$ \sim q$
The contrapositive of the statement "If you will work, you will earn money" is ..... .
Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is
The statement $A \rightarrow( B \rightarrow A )$ is equivalent to
The proposition $p \Rightarrow \;\sim (p\; \wedge \sim \,q)$ is
The statement $(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$ is :