The contrapositive of $(p \vee q) \Rightarrow r$ is
$r \Rightarrow (p \vee q)$
$\sim r \Rightarrow (p \vee q)$
$\sim r \Rightarrow \;\sim p\; \wedge \sim q$
$p \Rightarrow (q \vee r)$
Which of the following is the inverse of the proposition : “If a number is a prime then it is odd.”
Let $\Delta, \nabla \in\{\wedge, \vee\}$ be such that $( p \rightarrow q ) \Delta( p \nabla q )$ is a tautology. Then
Let the operations $*, \odot \in\{\wedge, \vee\}$. If $( p * q ) \odot( p \odot \sim q )$ is a tautology, then the ordered pair $(*, \odot)$ is.
$(p \wedge \, \sim q)\, \wedge \,( \sim p \vee q)$ is :-