નીચેના વિધાનો
$(S1)$ $\quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )$
$(S2) \quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))$
પૈકી
ફક્ત $(S1)$ નિત્યસત્ય છે.
ના તો $(S1)$ ન $(S2)$ નિત્યસત્ય છે.
ફક્ત $(S2)$ નિત્યસત્ય છે.
$(S1)$ અને $(S2)$ બંને નિત્યસત્ય છે.
આપેલ પૈકી ક્યૂ વિધાન સંપૂર્ણ સત્ય નથી ?
બુલીયન બહુપદી $\left( {p\;\wedge \sim q} \right)\;\;\vee \;q\;\;\vee \left( { \sim p\wedge q} \right)$ એ . . . . સમાનાર્થી છે. .
$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ =
જો $P \Rightarrow \left( {q \vee r} \right)$ એ મિથ્યા હોય તો $p, q, r$ નું સત્યાર્થતાનું મુલ્ય અનુક્રમે ............ થાય
$p, q, r$અને s ને તેમના સત્યાર્થતા મૂલ્યો આપતાં, સંયુક્ત વિધાનો $p \vee r \vee s , p \vee r \vee \sim s , p \vee \sim q \vee s , \sim p \vee \sim r \vee s$, $\sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s , q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$ માંથી મહત્તમ કેટલા વિધાનો એક સાથે સાચાં બનાવીશકાય$?$