Among the statements:

$(S1)$ $\quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )$

$(S2) \quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))$

  • [JEE MAIN 2023]
  • A

    Only $(S1)$ is a tautology

  • B

    Neither $(S1)$ nor $(S2)$ is a tautology

  • C

    Only $(S2)$ is a tautology

  • D

    Both $(S1)$ and $(S2)$ are tautologies

Similar Questions

Which of the following is the inverse of the proposition : “If a number is a prime then it is odd.”

Let $p , q , r$ be three logical statements. Consider the compound statements $S _{1}:((\sim p ) \vee q ) \vee((\sim p ) \vee r ) \text { and }$ and $S _{2}: p \rightarrow( q \vee r )$ Then, which of the following is NOT true$?$

  • [JEE MAIN 2022]

The logical statement $(p \Rightarrow q){\wedge}(q \Rightarrow \sim p)$ is equivalent to

  • [JEE MAIN 2020]

The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to

  • [JEE MAIN 2019]

Which of the following is not a statement