Among the statements:
$(S1)$ $\quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )$
$(S2) \quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))$
Only $(S1)$ is a tautology
Neither $(S1)$ nor $(S2)$ is a tautology
Only $(S2)$ is a tautology
Both $(S1)$ and $(S2)$ are tautologies
Which of the following is the inverse of the proposition : “If a number is a prime then it is odd.”
Let $p , q , r$ be three logical statements. Consider the compound statements $S _{1}:((\sim p ) \vee q ) \vee((\sim p ) \vee r ) \text { and }$ and $S _{2}: p \rightarrow( q \vee r )$ Then, which of the following is NOT true$?$
The logical statement $(p \Rightarrow q){\wedge}(q \Rightarrow \sim p)$ is equivalent to
The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to
Which of the following is not a statement