चित्र में दर्शाए अनुसार एक दीवार $(Wall)$, फर्श से $135^{\circ}$ कोण पर झुकी है, $\ell$ लम्बाई की एक सीढ़ी $(ladder)$ दीवार पर स्थित है. जैसे-जैसे सीड़ी फिसलती है उसका मध्य बिंदु एक दीर्घ वृत्त की चाप के अनुसार घूमती हैं. दीर्घ वृत्त का क्षेत्रफल क्या होगा ?
$\frac{\pi l^2}{4}$
$\pi l^2$
$4 \pi l^2$
$2 \pi l^2$
उस दीर्घवृत्त का समीकरण ज्ञात कीजिए, जिसके दीर्घ अक्ष की लंबाई $20$ है तथा नाभियाँ $(0,±5)$ हैं।
$c$ के उन मानों की संख्या, जिनके लिये सरल रेखा $y = 4x + c$ वक्र $\frac{{{x^2}}}{4} + {y^2} = 1$ को स्पर्श करती है, है
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
$b=3, c=4,$ केंद्र मूल बिंदु पर, नाभियाँ $x$ अक्ष पर
दो समुच्चय $A$ तथा $B$ निम्न प्रकार के हैं
$A=\{(a, b) \in R \times R:|a-5|< 1$ तथा $|b-5|< 1\}$
$B=\left\{(a, b) \in R \times R: 4(a-6)^{2}+9(b-5)^{2} \leq 36\right\}$ तो
एक दीर्घवृत्त बिन्दु $(-3, 1)$ से गुजरता है तथा उसकी उत्केन्द्रता $\sqrt {\frac{2}{5}} $ है। दीर्घवृत्त का समीकरण होगा