यदि त्रिभुज, जो धनात्मक $x$-अक्ष तथा वत्त $( x -2)^{2}+( y -3)^{2}=25$ के बिन्दु $(5,7)$ पर खींचे गए अभिलम्ब तथा स्पर्श रेखा द्वारा बनता है, का क्षेत्रफल $A$ है, तो $24 A$ बराबर है

  • [JEE MAIN 2021]
  • A

    $1140$

  • B

    $1225$

  • C

    $2450$

  • D

    $612$

Similar Questions

रेखा $x\cos \alpha  + y\sin \alpha  = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha  - 2ay\sin \alpha  = 0$ की स्पर्श रेखा होगी, यदि $p = $

 यदि $5x - 12y + 10 = 0$ तथा $12y - 5x + 16 = 0$ किसी वृत्त की स्पर्शियों के समीकरण हैं, तब इस वृत्त की त्रिज्या है

बिन्दु $(5, 1)$ से वृत्त ${x^2} + {y^2} + 6x - 4y - 3 = 0$ पर खींची गयी स्पर्श रेखा की लम्बाई होगी

यदि $OA$ तथा $OB$ मूल बिन्दु $O$ से वृत्त ${x^2} + {y^2} - 6x - 8y + 21 = 0$ पर खींची गयी रेखाएँ हों तो $AB =$

यदि किसी वृत्त का केन्द्र $(2, 3)$ एवं एक स्पर्श रेखा $x + y = 1$ है, तो इस वृत्त का समीकरण है