यदि ${c^2} > {a^2}(1 + {m^2})$ तो रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} = {a^2}$ को काटेगी

  • A

    एक बिन्दु पर

  • B

    दो विभिन्न बिन्दुओं पर

  • C

    किसी बिन्दु पर नहीं

  • D

    इनमें से कोई नहीं

Similar Questions

वृत्त ${x^2} + {y^2} - 3x - 6y - 10 = 0$ के बिन्दु $(-3, 4)$ पर अभिलम्ब का समीकरण है

तीन वृत्तों के समीकरण ${x^2} + {y^2} - 12x - 16y + 64 = 0,$ $3{x^2} + 3{y^2} - 36x + 81 = 0$ तथा ${x^2} + {y^2} - 16x + 81 = 0$ हैं, तब उस बिन्दु के निर्देशांक, जिससे तीनों वृत्तों पर खींची गई स्पर्श रेखाओं की लम्बाई बराबर हो, हैं

वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण जो कि सरल रेखा $y = mx + c$ के लम्बवत् है, होगा 

बिन्दु $(h, k)$ से वृत्त ${x^2} + {y^2} = {a^2}$ पर खींची गयी स्पर्श रेखाओं तथा उनके स्पर्श बिन्दुओं को मिलाने वाली रेखा द्वारा बने त्रिभुज का क्षेत्रफल है

वृत्त ${x^2} + {y^2} = 9$ के बिन्दु $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$ पर अभिलम्ब का समीकरण है