एक स्प्रिंग $10$ न्यूटन के बल से $5$ से.मी. खिंची होती है। जब $2$ कि.ग्रा. द्रव्यमान को इससे लटकाया जाता है, तो दोलन का आवर्तकाल होता है : (सेकण्ड में)
$0.0628$
$6.28$
$3.14$
$0.628$
$k$ बल नियतांक के एक भारहीन स्प्रिंग् पर $m$ द्रव्यमान टाँगने पर यह $n$ आवृत्ति से दोलन करता है। अब स्प्रिंग् को दो समान भागों में काट दिया जाता है एवं इससे $2m$ द्रव्यमान टाँग दिया जाता है, तो अब दोलन की आवृत्ति होगी
किसी कमानीदार तुला का पैमाना $0$ से $50\, kg$ तक अंकित है और पैमाने की लंबाई $20\, cm$ है । इस तुला से लटकाया गया कोई पिण्ड, जब विस्थापित करके मुक्त किया जाता है, $0.6\, s$ के आवर्तकाल से दोलन करता है । पिंड का भार कितना है ?
एक हल्की स्प्रिंग् से $M$ द्रव्यमान लटकाया जाता है। $m$ द्रव्यमान और लटकाने पर इसमें दूरी $'x'$ की अतिरिक्त वृद्धि हो जाती है। अब संयुक्त द्रव्यमान का इस स्प्रिंग् पर दोलनकाल होगा
$k$ बल नियतांक की एक एकसमान स्प्रिंग को $1:2$ के दो भागों में बाँटा गया है, तो छोटे व बडे़ भाग के बल नियतांकों का अनुपात है
समान द्रव्यमान $0.1\, kg$ वाली दो एक सामन गेंदे $A$ तथा $B$ दो एक समान एवं द्रव्यमान विहीन स्प्रिंगों से जुड़ी है। यह स्प्रिंग द्रव्यमान निकाय किसी दृढ़, चिकने वृत्तीय एवं क्षैतिज तल में स्थित पाइप में स्थित है जैसा कि दिखाया गया है। दोनों गेंदों के केन्द्र $0.06\, m$ त्रिज्या के वृत्तीय पथ पर घूमते है। प्रत्येक स्प्रिंग की वास्तविक लम्बाई $0.06\pi\, m$ एवं स्प्रिंग नियतांक $0.1\,N/m$ हैं प्रारम्भ में दोनों गेंदें व्यास $PQ$ के सापेक्ष $\theta = \pi /6$ रेडियन कोण से विस्थपित की जाती है। मुक्त करने पर गेंद $B$ के दोलनों की आवृत्ति होगी