किसी कमानीदार तुला का पैमाना $0$ से $50\, kg$ तक अंकित है और पैमाने की लंबाई $20\, cm$ है । इस तुला से लटकाया गया कोई पिण्ड, जब विस्थापित करके मुक्त किया जाता है, $0.6\, s$ के आवर्तकाल से दोलन करता है । पिंड का भार कितना है ?
Maximum mass that the scale can read, $M=50 \,kg$
Maximum displacement of the spring $=$ Length of the scale, $l=20 \,cm =0.2\, m$
Time period, $T=0.6 \,s$
Maximum force exerted on the spring, $F=M g$
Where, $g=$ acceleration due to gravity $=9.8 \,m / s ^{2}$
$F=50 \times 9.8=490$
Spring constant, $k=\frac{F}{l}=\frac{490}{0.2}=2450 \,Nm ^{-1}$
Mass $m,$ is suspended from the balance.
Time period, $T=2 \pi \sqrt{\frac{m}{k}}$
$\therefore m=\left(\frac{T}{2 \pi}\right)^{2} \times k=\left(\frac{0.6}{2 \times 3.14}\right)^{2} \times 2450=22.36 \,kg$
Weight of the body $=m g=22.36 \times 9.8=219.167\, N$
Hence, the weight of the body is about $219\; N$
एक $60\, kg$ भार का व्यक्ति चित्रानुसार एक स्प्रिंग तुला के क्षैतिज प्लेट फार्म पर खड़ा है। अब प्लेट फार्म $0.1\, m$ आयाम एवं $\frac{2}{\pi }Hz$ आवृत्ति से सरल आवर्त गति करने लगता है। निम्न में से कौन सा कथन सही है
घर्षणहीन क्षैतिज तल पर पड़ी हुई $k$ बल स्थिरांक की द्रव्यमान रहित स्प्रिंग के एक सिरे से $m$ द्रव्यमान का कण जुड़ा हुआ है। इस स्प्रिंग का दूसरा सिरा बद्ध है। यह कण अपनी साम्यावस्था से समय $t=0$ पर प्रारम्भिक क्षैतिज वेग $u_0$ से गतिमान हो रहा है। जब कण की गति $0.5 u_0$ होती है, यह एक दृढ़ दीवार से प्रत्यास्थ संघट्ट करता है। इस संघट्ट के बाद -
$(A)$ जब कण अपनी साम्यावस्था से लौटता है इसकी गति $u_0$ होती है।
$(B)$ जब कण अपनी साम्यावस्था से पहली बार गुजरता है वह समय $t=\pi \sqrt{\frac{m}{k}}$ है।
$(C)$ जब स्प्रिंग से सम्पीड़न अधिकतम होता है वह समय $t =\frac{4 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
$(D)$ जब कण अपनी साम्यावस्था से दूसरी बार गुजरता है वह समय $t =\frac{5 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
स्प्रिंग स्थिरांक $k$ वाली एक स्प्रिंग को काटकर दो हिस्से इस प्रकार किये जाते हैं कि एक हिस्सा दूसरे से लम्बाई में दुगुना है। तब लम्बे हिस्से का स्प्रिंग स्थिरांक होगा
चित्र में दर्शाए अवमदित दोलक के लिए गुटके का द्रव्यमान $m=200\, g . k =90\, N\, m ^{-1}$ तथा अवमंदन स्थिरांक $b=40 g s ^{-1}$ है ।
$(a)$ दोलन का आवर्तकाल.
$(b)$ वह समय जिसमें इसके कंपन का आयाम अपने आरंभिक मान का आधा रह जाता है तथा
$(c)$ वह समय जिसमें यांत्रिक ऊर्जा अपने आरंभिक मान की आधी रह जाती है, परिकलित कीजिए
$0.01 kg $ द्रव्यमान की एक वस्तु चित्रानुसार दिखाये गये बल के प्रभाव के अन्तर्गत बिन्दु $x = 0$ के परित: सरल आवर्त गति कर रही है इसका आवर्तकाल .... $s$ है