एक स्प्रिंग का स्प्रिंग नियतांक $10\,N/m$ है यह स्प्रिंग $10\,kg$ द्रव्यमान के साथ सरल आवर्त गति करती है, यदि किसी क्षण पर इसका वेग $40\,cm/sec$ है तो इस स्थिति में इसका विस्थापन ..... $m$ होगा (यहाँ आयाम $0.5\,m$ है)
$0.09 $
$0.3$
$0.03$
$0.9$
आरेख में दर्शाए अनुसार कमानी स्थिरांक $'2k'$ की दो सर्वसम कमानियाँ द्रव्यमान $m$ के किसी गुटके और दढ़ सपोर्ट से जुड़ी हैं। जब इस गुटके को इसकी साम्यावस्था से किसी एक ओर विस्थापित किया जाता है तो सरल आवर्त गति करने लगता है। इस निकाय के दोलन का आवर्तकाल होगा।
निम्न कथनों में से सही कथन है
बराबर द्रव्यमान के दो पिण्ड $M$ तथा $N$ दो द्रव्यमानहीन स्प्रिंगों से अलग-अलग लटके हैं। स्प्रिंग के बल नियतांक क्रमश: ${k_1}$ तथा ${k_2}$ है। यदि दोनों पिण्ड ऊध्र्वाधर तल में इस प्रकार कम्पन करते हैं कि इनके अधिकतम वेग बराबर हैं, तब $M$ के कम्पन के आयाम का $N$ के साथ अनुपात है
निम्नांकित चित्र स्प्रिंग तुला के निचले पलड़े पर रखे गये विभिन्न द्रव्यमानों $M$ तथा प्राप्त दोलन काल के वर्ग $T{^2}$ के मध्य है। ग्राफ में सरल रेखा का मूल बिन्दु से न निकलने का कारण हो सकता है
$l$ लम्बाई की एक स्प्रिंग् का बल-स्थिरांक $k$ है। जब इस पर भार $W$ लटकाया जाता है तो इसकी लम्बाई में वृद्धि $x$ होती है। यदि स्प्रिंग् को दो बराबर टुकड़ों में काटकर तथा उन्हें समान्तर क्रम में रखकर उन पर वही भार $W$ लटकाया जाये तो अब वृद्धि होगी