आरेख में दर्शाए अनुसार कमानी स्थिरांक $'2k'$ की दो सर्वसम कमानियाँ द्रव्यमान $m$ के किसी गुटके और दढ़ सपोर्ट से जुड़ी हैं। जब इस गुटके को इसकी साम्यावस्था से किसी एक ओर विस्थापित किया जाता है तो सरल आवर्त गति करने लगता है। इस निकाय के दोलन का आवर्तकाल होगा।

981-846

  • [JEE MAIN 2021]
  • A

    $2 \pi \sqrt{\frac{ m }{ k }}$

  • B

    $\pi \sqrt{\frac{ m }{2 k }}$

  • C

    $2 \pi \sqrt{\frac{ m }{2 k }}$

  • D

    $\pi \sqrt{\frac{ m }{ k }}$

Similar Questions

$1 \,kg$ संहति के किसी गुटके को एक कमानी से बाँधा गया है । कमानी का कमानी स्थिरांक $50 \,N\, m ^{-1}$ है । गुटके को उसकी साम्यावस्था की स्थिति $x=0$ से $t=0$ पर किसी घर्षणहीन पृष्ठ पर कुछ दूरी $x=10 \,cm$ तक खींचा जाता है । जब गुटका अपनी माध्य-र्थिति से $5\, cm$ दर है, तब उसकी गतिज, स्थितिज तथा कुल ऊर्जाएँ परिकलित कीजिए ।

${k_1}$और ${k_2}$​स्प्रिंग नियतांक वाली दो स्प्रिंगों को श्रेणीक्रम में जोड़ने पर संयोजन का तुल्य ​स्प्रिंग नियतांक होगा

  • [AIPMT 2004]

किसी नगण्य द्रव्यमान की स्प्रिंग् से $M$ द्रव्यमान लटकाया जाता है। स्प्रिंग् को थोड़ा खींचकर छोड़ दिया जाता है ताकि द्रव्यमान $M$ दोलनकाल $T$ से सरल आवर्ती दोलन करने लगता है। यदि द्रव्यमान को $m$ से बढ़ा दिया जाये तो दोलनकाल $\frac{5}{4}T$ हो जाता है, तो $\frac{m}{M}$ का अनुपात है            

$l$ लम्बाई की एक स्प्रिंग् का बल-स्थिरांक $k$ है। जब इस पर भार $W$ लटकाया जाता है तो इसकी लम्बाई में वृद्धि $x$ होती है। यदि स्प्रिंग् को दो बराबर टुकड़ों में काटकर तथा उन्हें समान्तर क्रम में रखकर उन पर वही भार $W$ लटकाया जाये तो अब वृद्धि होगी

समान स्प्रिंग् नियतांक $k$ वाली दो स्प्रिंगों को श्रेणीक्रम में जोड़ा जाता है तथा बाद में समान्तर क्रम में जोड़ते हैं। यदि इनसे $m$द्रव्यमान का पिण्ड लटका है तो उनकी ऊध्र्वाधर दोलनों की आवृत्तियों का अनुपात होगा