$10\, cm$ ત્રિજ્યાનો એક ગોલીય વાહક સમાન રીતે વિતરિત $3.2 \times 10^{-7} \,C$ વિજભાર ધરાવે છે આ ગોળાના કેન્દ્રથી $15 \,cm$ અંતરે રહેલા બિંદુ પર વિદ્યુતક્ષેત્રનું માન શું હશે ?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$
$1.28 \times 10^{7} N / C$
$1.28 \times 10^{4} N / C$
$1.28 \times 10^{5} N / C$
$1.28 \times 10^{6} N / C$
$\mathrm{R}$ ત્રિજ્યાના ગોળાનો વિચાર કરો કે જેના પર વિધુતભાર ઘનતાનું વિતરણ $p\left( r \right){\rm{ }} = {\rm{ }}kr,{\rm{ }}r \le R{\rm{ }} = {\rm{ }}0$ અને $r\, >\, R$.
$(a)$ $\mathrm{r}$ જેવાં અંતરે આવેલાં બધા બિંદુઓએ વિધુતક્ષેત્ર શોધો.
$(b)$ ધારોકે, ગોળા પરનો કુલ વિધુતભાર $2\mathrm{e}$ છે જ્યાં $\mathrm{e}$ એ ઇલેક્ટ્રોન પરનો વિધુતભાર છે. બે પ્રોટોન્સને કયાં જડિત કરી ( મૂકી ) શકાય કે જેથી તેમની દરેક પર લાગતું બળ શૂન્ય છે. એવું ધારી લો કે, પ્રોટોનને દાખલ કરવાથી ઋણ વિધુતભાર વિતરણમાં કોઈ ફેરફાર થતો નથી.
રેખીય વિદ્યતભાર ઘનતા $\lambda$ ધરાવતી $R$ ત્રિજયાની અર્ધવર્તુળાકાર રીંગના કેન્દ્ર પર વિદ્યુતક્ષેત્ર કેટલું થાય? $\left( {k = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$
રેખીય વિદ્યુતભાર ઘનતા $\lambda$ ધરાવતો એક લાંબો નળાકાર એક પોલા, સમઅક્ષીય, સુવાહક નળાકાર વડે ઘેરાયેલ છે. બે નળાકારની વચ્ચેના અવકાશમાં વિદ્યુતક્ષેત્ર કેટલું હશે?
સમાન અને વિરૂદ્ધ વિદ્યુતભારની ઘનતા $\sigma$ વાળી બે અને સમાંતર તકતીઓ એકબીજાથી અંતરે આવેલી છે. તકતીઓના વચ્ચે આવેલ બિંદુ આગળ વિદ્યુતક્ષેત્ર ......... છે.
નિયમિત રીતે વિદ્યુતભારીત કરેલા ગોળામાં વિદ્યુતભાર ઘનતા $r =R$ સુધી નીચેના સૂત્ર વડે અપાય છે. $\rho (r)=\;\rho _0\left( {\frac{5}{4} - \frac{r}{R}} \right)$, $r > R$ માટે $\;\rho $ $(r)=0 $ છે.જયાં,$r$ એ કેન્દ્રથી અંતર છે.કેન્દ્રથી $r$ અંતરે $(r < R) $ વિદ્યુતક્ષેત્રની તીવ્રતા ________