$\mathrm{R}$ ત્રિજ્યાના ગોળાનો વિચાર કરો કે જેના પર વિધુતભાર ઘનતાનું વિતરણ $p\left( r \right){\rm{ }} = {\rm{ }}kr,{\rm{ }}r \le R{\rm{ }} = {\rm{ }}0$ અને $r\, >\, R$. 

$(a)$ $\mathrm{r}$ જેવાં અંતરે આવેલાં બધા બિંદુઓએ વિધુતક્ષેત્ર શોધો. 

$(b)$ ધારોકે, ગોળા પરનો કુલ વિધુતભાર $2\mathrm{e}$ છે જ્યાં $\mathrm{e}$ એ ઇલેક્ટ્રોન પરનો વિધુતભાર છે. બે પ્રોટોન્સને કયાં જડિત કરી ( મૂકી ) શકાય કે જેથી તેમની દરેક પર લાગતું બળ શૂન્ય છે. એવું ધારી લો કે, પ્રોટોનને દાખલ કરવાથી ઋણ વિધુતભાર વિતરણમાં કોઈ ફેરફાર થતો નથી.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ ધારોકે, $R$ ત્રિજ્યાવાળો ગોળો $5$ છે અને બે ધારેલા ગોળાઓની ત્રિજ્યા $r< R$ અને $r> R$ છે

હવે $r< R$ બિદુ માટે વિદ્યુતક્ષેત્રની તીવ્રતા, $\iint \overrightarrow{ E } \cdot d \overrightarrow{ S }=\frac{1}{\epsilon_{0}} \int \rho d V \quad\left[\because \Sigma q=\int \rho d V \right]$

પણ $કદ V =\frac{4}{3} \pi r^{3}$

$\therefore d V =\frac{4}{3} \pi \times 3 r^{2} d r$

$=4 \pi r^{2} d r$

અને $\rho(r)=k r \quad(r< R$ માટે $)$

$\therefore \int \overrightarrow{ E } \cdot d \overrightarrow{ S }=\frac{1}{\epsilon_{0}} 4 \pi k \int_{0}^{r} r^{3} d r \quad[\rho=k r]$

$\therefore E \int d s=\frac{4 \pi k}{\epsilon_{0}}\left[\frac{r^{4}}{4}\right]_{0}^{r}$

$\therefore E \left(4 \pi r^{2}\right)=\frac{4 \pi k}{\epsilon_{0}} \cdot \frac{r^{4}}{4}$

$\therefore E =\frac{1}{4 \epsilon_{0}} \cdot k r^{2}$

અહી વિદ્યુતભાર ધનતા ધન છે તેથી વિદ્યુતક્ષેત્ર $\overrightarrow{ E }$ ત્રિજ્યાવર્તી બહાર તરફ છે.

Similar Questions

સમકેન્દ્રિય ગોળીય કવચ $A$ અને $B $ ની  ત્રિજયાઓ $r_A$ અને $r_B(r_B>r_A)$ છે.તેના પર વિદ્યુતભાર $Q_A$ અને $-Q_B(|Q_B|>|Q_A|)$ છે.તો વિદ્યુતક્ષેત્ર વિરુધ્ધ અંતરનો નો આલેખ કેવો થાય?

  • [AIIMS 2005]

આકૃતિમાં બતાવેલ બે અનંત પાતળા સમતલની પૃષ્ઠ વિદ્યુતભાર ઘનતા $\sigma$ છે. તો ત્રણ જુદા જુદા પ્રદેશ $E_{ I }, E_{ II }$ અને $E_{III}$ માં વિદ્યુતક્ષેત્ર કેટલું મળે?

  • [JEE MAIN 2023]

$R$ ત્રિજ્યાના અને અનંત લંબાઈના વિદ્યુતભાર વિતરણ વાળા નળાકારને લીધે વિદ્યુતક્ષેત્ર શોધો અને તેની પાસે રેખીય વિદ્યુતભાર ઘનતા $\lambda$ છે. જે તેના અક્ષથી અડધી ત્રિજ્યા આગળ મળે છે.

એક ગોળા પર એકસમાન વિજભાર પથરાયેલ છે તેની વિજભાર ઘનતા નીચે મુજબ આપવામાં આવે છે.

$\rho (r)\, = \,{\rho _0}\left( {1 - \frac{r}{R}} \right)$,  $r < R$ માટે

$\rho (r)\,=\,0$, $r\, \ge \,R$ માટે

જ્યાં $r$ એ વિજભાર વિતરણના કેન્દ્રથી અંતર અને $\rho _0$ અચળાંક છે. $(r < R)$ ના અંદરના બિંદુ પાસે વિદ્યુતક્ષેત્ર કેટલું મળે?

  • [JEE MAIN 2014]

બે $+\sigma$ પૃષ્ઠ વિજભાર ઘનતા ધરાવતા અનંત સમતલને એક બીજા સાથે $30^{\circ} $ ના ખૂણે મૂકવામાં આવે છે, તો તેમની વચ્ચેના ક્ષેત્રમાં વિદ્યુતક્ષેત્ર કેટલું થાય?

  • [JEE MAIN 2020]