રેખીય વિદ્યુતભાર ઘનતા $\lambda$ ધરાવતો એક લાંબો નળાકાર એક પોલા, સમઅક્ષીય, સુવાહક નળાકાર વડે ઘેરાયેલ છે. બે નળાકારની વચ્ચેના અવકાશમાં વિદ્યુતક્ષેત્ર કેટલું હશે?
Charge density of the long charged cylinder of length $L$ and radius $r$ is $\lambda$.
Another cylinder of same length surrounds the pervious cylinder.
The radius of this cylinder is $R$. Let $E$ be the electric field produced in the space between the two cylinders.
Electric flux through the Gaussian surface is given by Gauss's theorem as,
$\phi=E(2 \pi d) L$
Where, $d=$ Distance of a point from the common axis of the cylinders Let
$q$ be the total charge on the cylinder.
It can be written as $\therefore \phi=E(2 \pi d L)=\frac{q}{\epsilon_{0}}$
Where, $q=$ Charge on the inner sphere of the outer cylinder
$\varepsilon_{0}=$ Permittivity of free space $E(2 \pi d L)=\frac{\lambda L}{\epsilon_{0}}$
$E=\frac{\lambda}{2 \pi \epsilon_{0} d}$
Therefore, the electric field in the space between the two cylinders is $\frac{\lambda}{2 \pi \epsilon_{0} d}$
એક અનંત લંબાઈનો રેખીય વિદ્યુતભાર $2 \,cm$ અંતરે $9 \times 10^4 \;N/C$ વિદ્યુતક્ષેત્ર ઉત્પન્ન કરે છે. રેખીય વિદ્યુતભાર ઘનતા ($\mu C / m$ માં) ગણો.
$10\; cm$ ત્રિજ્યાના એક વાહક ગોળા પર અજ્ઞાત વિદ્યુતભાર છે. ગોળાના કેન્દ્રથી $20\; cm$ દૂરના બિંદુએ વિદ્યુતક્ષેત્ર $-1.5 \times 10^{3} \;N / C$ ત્રિજ્યાવર્તી દિશામાં અંદરની તરફ હોય તો ગોળા પરનો કુલ વિદ્યુતભાર કેટલો હશે?
$+3\,Q$ વિદ્યુતભાર ધરાવતા ગોળાને $-Q$ વિદ્યુતભાર ધરાવતી ગાળીય કવચની અંદર સમકેન્દ્રિય મૂકેલ છે.ગોળાની ત્રિજયા $a$ એ ગોળીય કવચની ત્રિજયા $b(b>a)$ કરતાં નાની છે.હવે,કેન્દ્રથી $R>a$ બિંદુએ વિદ્યુતક્ષેત્ર કેટલું થાય?
$S(r)\,\, = \,\,\frac{Q}{{\pi {R^4}}}\,r$ એ $R$ ત્રિજ્યા અને કુલ વિદ્યુતભાર $Q$ વાળા એક ધન ગોળાના વિદ્યુતભાર વિતરણની ઘનતા આપે છે. ગોળાના કેન્દ્રથી $r_1$ અંતરે ગોળાની અંદરના બિંદુ $P$ માટે વિદ્યુતક્ષેત્રનું મૂલ્ય ....... છે.
$(a)$ દર્શાવો કે સ્થિરવિધુતક્ષેત્રના લંબ ઘટકનું, વિધુતભારિત સપાટીની એકબાજુથી બીજી બાજુ સુધી અસતતપણું
$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{0}}$
દ્વારા અપાય છે. જ્યાં, ${\hat n}$ તે બિંદુએ સપાટીને લંબ એકમ સદિશ છે. $\sigma $ તે બિંદુએ વિધુતભારની પૃષ્ઠ ઘનતા છે. ( ${\hat n}$ ની દિશા બાજુ $1$ થી $2$ બાજુ તરફ છે. ) આ પરથી દર્શવો કે સુવાહકની તરત બહાર વિધુતક્ષેત્ર ${\sigma \hat n/{\varepsilon _0}}$ છે.
$(b)$ દર્શાવો કે સ્થિતવિદ્યુત ક્ષેત્રનો સ્પર્શીય $(Tangential)$ ઘટક, વિદ્યુતભારિત સપાટીની એક બાજુથી બીજી બાજુ સુધી સતત હોય છે. [ સૂચનઃ $(a)$ માટે ગોસના નિયમનો ઉપયોગ કરો. $(b)$ માટે સ્થિત વિદ્યુત ક્ષેત્ર વડે બંધ ગાળા પર કરેલું કાર્ય શૂન્ય છે તે હકીકતનો ઉપયોગ કરો. ]