નિયમિત રીતે વિદ્યુતભારીત કરેલા ગોળામાં વિદ્યુતભાર ઘનતા $r =R$ સુધી નીચેના સૂત્ર વડે અપાય છે. $\rho (r)=\;\rho _0\left( {\frac{5}{4} - \frac{r}{R}} \right)$, $r > R$ માટે $\;\rho $ $(r)=0 $ છે.જયાં,$r$ એ કેન્દ્રથી અંતર છે.કેન્દ્રથી $r$ અંતરે $(r < R) $ વિદ્યુતક્ષેત્રની તીવ્રતા ________
$\frac{{{\rho _o}r}}{{3{\varepsilon _0}}}\;\left( {\frac{5}{4} - \frac{r}{R}} \right)\;\;\;\;\;\;$
$\frac{{4\pi {\rho_0r}}}{{3{\varepsilon _0}}}\;\left( {\frac{5}{3} - \frac{r}{R}} \right)$
$\frac{{{\rho _o}r}}{{4{\varepsilon _0}}}\;\left( {\frac{5}{3} - \frac{r}{R}} \right)$
$\frac{{4\pi {\rho_0r}}}{{3{\varepsilon _0}}}\;\left( {\frac{5}{4} - \frac{r}{R}} \right)$
આકૃતિમાં દર્શાવ્યા પ્રમાણે બે બિંદુવત વિજભાર $+Q$ અને $-Q$ ને એક ગોળીય કવચની બખોલમાં મૂકેલા છે. વિજભારને બખોલની સપાટીની નજીક અને કેન્દ્રથી વિરુદ્ધ દિશામાં મૂકેલા છે. જો $\sigma _1$ એ અંદરની સપાટી પૃષ્ઠ વિજભારઘનતા અને $Q_1$ તેના પર રહેલો કુલ વિજભાર અને $\sigma _2$ એ બહારની સપાટીની પૃષ્ઠ વિજભારઘનતા અને $Q_2$ તેના પર રહેલો કુલ વિજભાર હોય તો ...
ગોસના નિયમના ઉપયોગો જણાવો.
ગોસના નિયમનો ઉપયોગ કર્યા સિવાય વિધુતભારની સમાન રેખીય ઘનતા $\lambda$ ધરાવતા લાંબા પાતળા તારને લીધે ઉદભવતા વિધુતક્ષેત્રનું સૂત્ર મેળવો. (સૂચન : કુલંબના નિયમનો સીધો ઉપયોગ કરો અને જરૂરી સંકલનની ગણતરી કરો.)
આકૃતિમાં કોઈ વસ્તુ માટે વિદ્યુતક્ષેત્ર $E_{(r)}$ વિરુદ્ધ કોઈ બિંદુના તે વસ્તુના કેન્દ્રથી અંતર $(r)$ માટેનો આલેખ છે, તેથી......
સમકેન્દ્રિય ગોળીય કવચ $A$ અને $B $ ની ત્રિજયાઓ $r_A$ અને $r_B(r_B>r_A)$ છે.તેના પર વિદ્યુતભાર $Q_A$ અને $-Q_B(|Q_B|>|Q_A|)$ છે.તો વિદ્યુતક્ષેત્ર વિરુધ્ધ અંતરનો નો આલેખ કેવો થાય?