$200$ किलोग्राम द्रव्यमान का एक उपग्रह $3\,R/2$ औसत त्रिज्या की कक्षा में पृथ्वी के चारों ओर परिक्रमण कर रहा है, जहाँ $R-$पृथ्वी की त्रिज्या है। पृथ्वी तल पर $1$ किलोग्राम द्रव्यमान के पिण्ड पर यदि $10 N$ का आकर्षण बल लगे, तो उपग्रह पर लगने वाले बल का मान ........ $N$ होगा
$889$
$880$
$890$
$892$
पृथ्वी पर किसी विशेष बिन्दु पर $‘g’$ का मान $9.8\,m/{s^2}$ है। माना कि अब पृथ्वी बिना द्रव्यमान क्षति के एक समान रूप से प्रारम्भिक आकार के आधे आकार में सिकुड़ जाती है तो इसी बिन्दु पर $ ‘g’ $ का मान ........ $m/{\sec ^2}$ होगा (माना कि इस बिन्दु की दूरी, पृथ्वी के केन्द्र के सापेक्ष नहीं सिकुड़ी है)
पृथ्वी की सतह पर एक पिण्ड का भार $100 \mathrm{~N}$ है। इस पर लगने वाला गुरुत्वाकर्षण बल, जब पृथ्वी की त्रिज्या के एक चौथाई के बराबर एक ऊँचाई पर ले जाने पर, है:
एक पिण्ड का पृथ्वी तल पर भार $72\, N$ है। पृथ्वी तल से $\frac{R_e}{2}$ ऊँचाई पर इसका भार....... $N$ है
माना दो एकसमान सरल लोलक घड़ियाँ हैं। घड़ी-1 पृथ्वी के तल पर है, एवं घड़ी $- 2$ किसी स्पेस स्टेशन (अंतरिक्ष केन्द्र) में पृथ्वी के तल से $h$ ऊँचाई पर रखी है। घड़ी-1 एवं घड़ी- $2,4\,s$ एवं $6\,s$ के आवर्तकालों पर क्रियान्वित हाती है तो $h$ का मान $..........\,km$ होगा -
(माना पृथ्वी की त्रिज्या $R _{ E }=6400\,km$ एवं पृथ्वी पर $g =10\,m / s ^2$ )