$\left( {{2^{1/3}} + \frac{1}{{2{{\left( 3 \right)}^{1/3}}}}} \right)^{10}$ ના વિસ્તરણમાં પહેલેથી $5^{th}$ માં પદ અને છેલ્લેથી $5^{th}$ માં પદનો ગુણોત્તર મેળવો.

  • [JEE MAIN 2019]
  • A

    $1:2{\left( 6 \right)^{\frac{1}{3}}}$

  • B

    $1:4{\left( 16 \right)^{\frac{1}{3}}}$

  • C

    $4{\left( {36} \right)^{\frac{1}{3}}}\,:\,1$

  • D

    $2{\left( {36} \right)^{\frac{1}{3}}}\,:\,1$

Similar Questions

${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$ ના વિસ્તરણમાં ${x^4}$ નો સહગુણક મેળવો.

  • [IIT 1983]

${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^{32}}$ નો સહગુણક મેળવો.

$(2 -x^2)$ અને  $((1 + 2x + 3x^2)^6 +(1 -4x^2)^6)$ ના ગુણાકારમાં $x^2$ નો સહગુણક મેળવો. 

 

  • [JEE MAIN 2018]

${\left( {1 + x} \right)^{1000}} + x{\left( {1 + x} \right)^{999}} + {x^2}{\left( {1 + x} \right)^{998}} + ..... + {x^{1000}}$ ના વિસ્તરણમાં $x^{50}$ નો સહગુણક મેળવો.

  • [JEE MAIN 2014]

જો ${\left( {x - \frac{1}{{2x}}} \right)^n}$ ના વિસ્તરણમાં ત્રીજા અને ચોથા પદોના સહગુણકનો ગુણોતર $1 : 2$ હોય , તો $n$ ની કિમત મેળવો.