एक भौतिक राशि $X$ चार प्रक्षेपित राशियों $k,\,l,\, m$ एवं $n$ से व्यजंक $X = \frac{{2{k^3}{l^2}}}{{m\sqrt n }}$ द्वारा सम्बन्धित है तथा $k,\,l,\, m$ व $n$ के मापन की प्रतिशत त्रुटि क्रमश: $1\%,2\%,3\%$ एवं $4\% $ है तो $X$ में प्रतिशत त्रुटि ......... $\%$ होगी
$8$
$10$
$12$
$14$
घन की आकृति वाले किसी पदार्थ का घनत्व, उसकी तीन भुजाओं एवं द्रव्यमान को माप कर, निकाला जाता है। यदि द्रव्यमान एवं लम्बाई कों मापने में सापेक्ष त्रुटियाँ क्रमशः $4 \%$ तथा $3 \%$ हो तो घनत्व को मापने में अधिकतम त्रुटि ......... $\%$ होगी
यदि वस्तु नियत चाल से $(4.0 \pm 0.3)$ में $ (13.8 \pm 0.2) m$ की दूरी तय करती है। त्रुटि की सीमाओं के भीतर वस्तु का वेग होगा
एक पिण्ड का द्रव्यमान $22.42$ ग्राम तथा आयतन $4.7$ घन सेमी है। इसके मापन में $0.01$ ग्राम तथा $0.1$ घन सेमी की त्रुटि है, तो घनत्व में अधिकतम त्रुटि होगी
गोले की त्रिज्या $(5.3 \pm 0.1) \,cm$ है तो आयतन में प्रतिशत त्रुटि होगी
एक तार का द्रव्यमान $0.3 \pm 0.003\,g$, त्रिज्या $0.5 \pm 0.005\,mm$ तथा लम्बाई $6 \pm 0.06\,cm$ है। इसके घनत्व के मापन में अधिकतम प्रतिशत त्रुटि .......... $\%$ होगी