શબ્દ $\mathrm {'ASSASSINATION'}$ માંથી એક અક્ષર યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. તે એક સ્વર હોય તો પસંદ કરેલા અક્ષરની સંભાવના શોધો.
There are $13$ letters in the word $\mathrm {'ASSASSINATION'}$.
$\therefore$ Hence, $n( S )=13$
There are $6$ vowels in the given word.
$\therefore $ Probability (vowel) $ =\frac{6}{13}$
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
નીચે આપેલ ઘટનાઓ વર્ણવો : $A$ પરંતુ $B$ નહિ
બે પાસાને એક વાર ફેંકતા બંને પાસાપરના અંકોનો સરવાળો $7$ થવાની પ્રતિકૂળ સંભાવના પ્રમાણ શોધો.
જો $A$ અને $B$ બે સ્વત્રંત ઘટનાઓ છે કે જેથી $P\,(A \cap B') = \frac{3}{{25}}$ અને $P\,(A' \cap B) = \frac{8}{{25}},$ તો $P(A) = $
ગણિતનો એક દાખલો ત્રણ વિર્ધાર્થીં $A, B$ અને $C$ ને આપવામાં આવે છે. તેને ઉકેલવાની સંભાવના અનુક્રમે $1/2, 1/3, 1/4 $ હોય, તો દાખલો ઉકેલવાની સંભાવના કેટલી થાય ?
$A$ અને $B$ ને એક વર્ષમાં મૃત્યુ પામવાની સંભાવના અનુક્રમે $p$ અને $q$ છે. તો તે પૈકી માત્ર એક જ વર્ષના અંત સુધી જીવીત રહેવાની સંભાવના કેટલી થાય ?