ગણિતનો એક દાખલો ત્રણ વિર્ધાર્થીં $A, B$ અને $C$ ને આપવામાં આવે છે. તેને ઉકેલવાની સંભાવના અનુક્રમે $1/2, 1/3, 1/4 $ હોય, તો દાખલો ઉકેલવાની સંભાવના કેટલી થાય ?
$1/4$
$1/2$
$3/4$
$3/16$
ઘટના $A$ ની સંભાવના $0.5$ અને $B$ ની $0.3$ છે. જો $A$ અને $B$ એ પરસ્પર નિવારક ઘટના હોય તોે $A$ અથવા $B$ પૈકી એકપણ ન બને તેની સંભાવના મેળવો.
નીચે બે વિધાનો આપેલા છે : ધારોકે $\Omega$ નિદર્શાવકાશ અને $A \subseteq \Omega$ એક ધટના છે.
$(S1) :$ જો $P(A) =0$ હોય, તો $A =\emptyset$
$(S2) :$ જો $P ( A )=1$ હોય, તો $A =\Omega$
તો
A અને B ની એક વર્ષમાં મૃત્યુ પામવાની સંભાવનાઓ અનુક્રમે p અને q છે. તો વર્ષના અંતે ફક્ત એક જીવે તેની સંભાવના કેટલી?
એક પ્રયોગમાં એક પાસો ફેંકવામાં આવે છે અને જો પાસા ઉપર યુગ્મ સંખ્યા મળે તો એક સિક્કો એક વાર ઉછાળવામાં આવે છે. જો પાસા ઉપર અયુગ્મ સંખ્યા મળે તો સિક્કાને બે વાર ઉછાળે છે. આ પ્રયોગનો નિદર્શાવકાશ લખો.
એક સિક્કો ઉછાળો. જો તે છાપ બતાવે તો આપણે થેલામાંથી એક દડો કાઢીશું. તે થેલામાં $3$ વાદળી અને $4$ સફેદ દડા છે. જો તે કાંટો બતાવે તો આપણે પાસો ઉછાળીશું. આ પ્રયોગનો નિદર્શાવકાશ વર્ણવો.