$40$ छात्रों का एक समूह $3$ विषयों गणित, भौतिक विज्ञान तथा रसायन विज्ञान की परीक्षा में बैठा। यह पाया गया कि सभी छात्र कम से कम विषय में उत्तीर्ण हुए, $20$ छात्र गणित में उत्तीर्ण हुए, $25$ छात्र भौतिक विज्ञान में उत्तीर्ण हुए, $16$ छात्र रसायन विज्ञान में उत्तीर्ण हुए, अधिक से अधिक $11$ छात्र गणित तथा भौतिक विज्ञान दोनो में उत्तीर्ण हुए। अधिक से अधिक $15$ छात्र भौतिक विज्ञान तथा रसायन विज्ञान दोनो में उत्तीर्ण हुए, अधिक से अधिक $15$ छात्र गणित तथा रसायन विज्ञान दोनो में उत्तीर्ण हुए। तो तीनों विषयों में उत्तीर्ण होंने वाले छात्रों की अधिकतम संख्या है ............

  • [JEE MAIN 2024]
  • A

    $10$

  • B

    $7$

  • C

    $5$

  • D

    $11$

Similar Questions

किसी विद्यालय के $800 $ लड़कों में से, $224 $ क्रिकेट, $240 $ हॉकी तथा $336 $ बास्केटबॉल खेलते हैं। कुल $64$  बास्केटबॉल और हॉकी, $80 $ क्रिकेट और बास्केटबॉल तथा $40$  क्रिकेट और हॉकी खेलते हैं, तथा $24 $ तीनों खेल खेलते हैं तब कोई भी खेल न खेलने वाले लड़कों की संख्या है

एक विद्यालय के $20$ अध्यापक या तो गणित या भौतिकी पढ़ाते हैं, $ 12 $ गणित जबकि $4 $ दोनों विषय पढ़ाते हैं, तब केवल भौतिकी पढ़ाने वाले अध्यापकों की संख्या होगी

किसी महाविद्यालय के $300$ छात्रों में से प्रत्येक छात्र $5$ समाचार पत्र पढ़ते हैं तथा प्रत्येक समाचार पत्र $60$  छात्रों द्वारा पढ़ा जाता है, तब समाचार पत्रों की संख्या होगी

  • [IIT 1998]

मान लीजिए कि किसी समतल में स्थित सभी त्रिभुजों का समुच्चय सार्वत्रिक समुच्चय $U$ है। यदि $A$ उन सभी त्रिभुजों का समुच्चय है जिनमें कम से कम एक कोण $60^{\circ}$ से भिन्न है, तो $A ^{\prime}$ क्या है ?

एक कमेटी में, $50$ व्यक्ति फ़्रेंच, $20$ व्यक्ति स्पेनिश और $10$ व्यक्ति स्पेनिश और फ्रेंच दोनों ही भाषाओं को बोल सकते हैं। कितने व्यक्ति इन दोनों ही भाषाओं में से कम से कम एक भाषा बोल सकते हैं ?