A group of $40$ students appeared in an examination of $3$ subjects - Mathematics, Physics Chemistry. It was found that all students passed in at least one of the subjects, $20$ students passed in Mathematics, $25$ students passed in Physics, $16$ students passed in Chemistry, at most $11$ students passed in both Mathematics and Physics, at most $15$ students passed in both Physics and Chemistry, at most $15$ students passed in both Mathematics and Chemistry. The maximum number of students passed in all the three subjects is___________.
$10$
$7$
$5$
$11$
A class has $175$ students. The following data shows the number of students obtaining one or more subjects. Mathematics $100$, Physics $70$, Chemistry $40$; Mathematics and Physics $30$, Mathematics and Chemistry $28$, Physics and Chemistry $23$; Mathematics, Physics and Chemistry $18$. How many students have offered Mathematics alone
In a class of $30$ pupils, $12$ take needle work, $16$ take physics and $18$ take history. If all the $30$ students take at least one subject and no one takes all three then the number of pupils taking $2$ subjects is
In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?
A survey shows that $63 \%$ of the people in a city read newspaper $A$ whereas $76 \%$ read newspaper $B$. If $x \%$ of the people read both the newspapers, then a possible value of $x$ can be
Out of $500$ car owners investigated, $400$ owned car $\mathrm{A}$ and $200$ owned car $\mathrm{B} , 50$ owned both $\mathrm{A}$ and $\mathrm{B}$ cars. Is this data correct?