વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો ગુણાકાર કેટલો થાય ?

  • A

    $-2$

  • B

    $1$

  • C

    $0$

  • D

    $2$

Similar Questions

જો સમાંતર શ્રેણી નું $m$ મું પદ $1/n$ અને $n$ મું પદ $1/m$ હોય તો $mn$ પદોનો સરવાળો ......થાય.

સમાંતર શ્રેણીનાં $n $ પદોનો સરવાળો $nA + n^2B$  છે, જ્યાં $A$ અને $B$ અચળ છે, તો આ શ્રેણીનો સામાન્ય તફાવત....... છે.

જ્યારે કોઈ સમાંતર શ્રેણીનું $9^{th}$ પદને તેના $2^{nd}$ પદ દ્વારા ભાગવામાં આવે તો ભાગફળ $5$ મળે અને જ્યારે $13^{th}$ પદને તેના $6^{th}$ પદ વડે ભાગવામાં આવે તો ભાગફળ $2$ અને શેષ $5$ મળે તો સમાંતર શ્રેણીનું પ્રથમ પદ મેળવો 

જો સમાંતર શ્રેણીમાં આવેલી ત્રણ સંખ્યાઓનો સરવાળો $24$ અને તેમનો ગુણાકાર $440$ હોય તો આ સંખ્યાઓ શોધો. 

જો ${\left( {1 - 2x + 3{x^2}} \right)^{10x}}  = {a_0} + {a_1}x + {a_2}{x^2} + .....+{a_n}{x^n},{a_n} \ne 0$, હોય તો $a_0,a_1,a_2,...a_n$ નો સમાંતર મધ્યક મેળવો.