A farmer buys a used tractor for $Rs$ $12000 .$ He pays $Rs$ $6000$ cash and agrees to pay the balance in annual instalments of $Rs$ $500$ plus $12 \%$ interest on the unpaid amount. How much will the tractor cost him?
It is given farmer pays $Rs.$ $6000$ in cash.
Therefore, unpaid amount $=$ $Rs.$ $12000-$ $Rs.$ $6000=$ $Rs.$ $6000$
According to the given condition, the interest paid annually is
$12 \%$ of $6000,12 \%$ of $5500,12 \%$ of $5000 \ldots \ldots 12 \%$ of $500$
Thus, total interest to be paid
$=12 \%$ of $6000+12 \%$ of $5500+12 \%$ of $5000+\ldots \ldots+12 \%$ of $500$
$=12 \%$ of $(6000+5500+5000+\ldots .+500)$
$=12 \%$ of $(500+1000+1500+\ldots \ldots+6000)$
Now, the series $500,1000,1500 \ldots 6000$ is an $A.P.$ with both the first term and common difference equal to $500 .$
Let the number of terms of the $A.P.$ be $n$
$\therefore 6000=500+(n-1) 500$
$\Rightarrow 1+(n-1)=12$
$\Rightarrow n=12$
$\therefore$ Sum of the $A.P.$
$=\frac{12}{2}[2(500)+(12-1)(500)]=6[1000+5500]=6(6500)=39000$
Thus, total interest to be paid
$=12 \%$ of $(500+1000+1500+\ldots . .+6000)$
$=12 \%$ of $39000= Rs .4680$
Thus, cost of tractor $=( Rs .12000+ Rs .4680)= Rs .16680$
If the sum of the first $n$ terms of the series $\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$ is $435\sqrt 3 $ , then $n$ equals
If ${a_1} = {a_2} = 2,\;{a_n} = {a_{n - 1}} - 1\;(n > 2)$, then ${a_5}$ is
$8^{th}$ term of the series $2\sqrt 2 + \sqrt 2 + 0 + .....$ will be
Let ${S_1},{S_2},......,{S_{101}}$ be the consecutive terms of an $A.P$ . If $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ and ${S_1} + {S_{101}} = 50$ , then $\left| {{S_1} - {S_{101}}} \right|$ is equal to
Let $S_n$ be the sum to n-terms of an arithmetic progression $3,7,11, \ldots \ldots$. . If $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$, then $\mathrm{n}$ equals