એક સમતોલ સિક્કા અને એક સમતોલ પાસાને ઉછાળવામાં આવે છે, ધારો કે ઘટના $A$, ‘સિકકા પર છાપ મળે' તે અને ઘટના $B$ ‘પાસા પર $3$ મળે તે દર્શાવે છે. ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે નહિ તે ચકાસો.
If a fair coin and an unbiased die are tossed, then the sample space $S$ is given by,
$S=\left\{\begin{array}{l}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6) \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let $A:$ Head appears on the coin
$A=\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6)\}$
$\Rightarrow $ $P(A)=\frac{6}{12}=\frac{1}{2}$
$\mathrm{B}: 3$ on die $=\{(\mathrm{H}, 3),(\mathrm{T}, 3)\}$
$P(B)=\frac{2}{12}=\frac{1}{6}$
$\therefore $ $A \cap B=\{(H, 3)\}$
$P(A \cap B)=\frac{1}{12}$
$P(A)\, P(B)=\frac{1}{2} \times \frac{1}{6}=P(A \cap B)$
Therefore, $A$ and $B$ are independent events.
જો $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ અને $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ તો $P(B \cap C)$ = . . .
ધારો કે ઘટનાઓ $A$ અને $B $ માટે, $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ અને $P\left( {\bar A} \right) = \frac{1}{4}$ છે,તો ઘટનાઓ $A$ અને $B$. . . . . .
પૂણાંકો $\{1,2,3, \ldots \ldots . .50\}$ માંથી એક પૂણાંક યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. પસંદ કરાયેલ પૂર્ણાંક એ $4$, $6$ અને $7$ માંથી ઓછામાં ઓછા એકનો ગુણિ હોવાની સંભાવના............................. છે.
આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ અને $B$ નહિ) શોધો.
એક ખોખામાં $10$ કાળા રંગના અને $8$ લાલ રંગના દડા છે. તે ખોખામાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે. તેમાંનો એક દડો કાળા રંગનો અને અન્ય લાલ રંગનો હોય તેની સંભાવના શોધો.