एक न्याय्य सिक्का और एक अभिनत पासे को उछाला गया। मान लें $A$ घटना 'सिक्के पर चित प्रकट होता है' और $B$ घटना 'पासे पर संख्या $3$ प्रकट होती है' को निरूपित करते हैं। निरीक्षण कीजिए कि घटनाएँ $A$ और $B$ स्वतंत्र हैं या नहीं?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

If a fair coin and an unbiased die are tossed, then the sample space $S$ is given by,

$S=\left\{\begin{array}{l}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6) \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$

Let $A:$ Head appears on the coin

$A=\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6)\}$

$\Rightarrow $ $P(A)=\frac{6}{12}=\frac{1}{2}$

$\mathrm{B}: 3$ on die $=\{(\mathrm{H}, 3),(\mathrm{T}, 3)\}$

$P(B)=\frac{2}{12}=\frac{1}{6}$

$\therefore $ $A \cap B=\{(H, 3)\}$

$P(A \cap B)=\frac{1}{12}$

$P(A)\, P(B)=\frac{1}{2} \times \frac{1}{6}=P(A \cap B)$

Therefore, $A$ and $B$ are independent events.

Similar Questions

एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

यदि वह हींदी का अखबार पढती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।

मान लें $A$ और $B$ स्वतंत्र घटनाएँ हैं तथा $P ( A )=0.3$ और $P ( B )=0.4 .$ तब $P ( A \cap B )$ ज्ञात कीजिए।

एक पासे को तीन बार उछाला जाता है तो कम से कम एक बार विषम संख्या प्राप्त होने की प्रायिकता ज्ञात कीजिए।

एक घटना के घटित होने की प्रायिकता दूसरी घटना के घटित होने की प्रायिकता का वर्ग है परन्तु पहली घटना के प्रतिकूल संयोगानुपात दूसरी के प्रतिकूल संयोगानुपात के घन हैं, तो घटनाओं की प्रायिकतायें हैं

घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए

$P ( A$ या $B )$