સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?

$E :$ ‘પસંદ કરેલ પતું કાળીનું છે'. $F :$ ‘પસંદ કરેલ પતું એક્કો છે'. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In a deck of $52$ cards, $13$ cards are spades and $4$ cards are aces.

$\therefore  $ $ \mathrm{P}(\mathrm{E})=\mathrm{P}$  (the card drawn is a spade) $=\frac{13}{52}=\frac{1}{4}$

$\therefore  $ $ \mathrm{P}(\mathrm{F})=\mathrm{P}$  (the card drawn is a ace) $=\frac{4}{52}=\frac{1}{13}$

In the deck of cards, only $1$ card is an ace of spades.

$ \mathrm{P}(\mathrm{EF})=\mathrm{P}$ (the card drawn is spade and an ace) $=\frac {1}{52}$

$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{1}{4} \frac{1}{13}=\frac{1}{52}=\mathrm{P}(\mathrm{EF})$

$\Rightarrow \mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\mathrm{P}(\mathrm{EF})$

Therefore, the events $\mathrm{E}$ and $\mathrm{F}$ are independent.

Similar Questions

એક થેલામાં $4$ લાલ અને $ 4$ વાદળી દડા છે. ચાર દડા એક પછી એક થેલામાંથી લેવામાં આવે છે. તો પસંદ થયેલા દડા ક્રમિક રીતે ભિન્ન  રંગના હોવાની સંભાવના શોધો.

$52$ પત્તા પૈકી યાર્દચ્છિક રીતે એક પત્તુ પસંદ કરતા તે પૈકી રાજા અથવા કાળીનું પત્તુ હોવાની સંભાવના કેટલી થાય ?

એક થેલામાં $4$ લાલ, $5$ સફેદ અને $6$ કાળા દડા છે. ત્રણ દડા યાર્દચ્છિક રીતે પસંદ કરવામાં આવે, તો તેઓ ભિન્ન રંગના હોવાથી સંભાવના કેટલી થાય ?

$P(A \cup B) = P(A \cap B)$ તો જ શક્ય બને જો $P(A)$ અને $P(B)$ વચ્ચે  .. . . પ્રકારનો સંબંધ બને.

  • [IIT 1985]

જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.