સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?
$E :$ ‘પસંદ કરેલ પતું કાળીનું છે'. $F :$ ‘પસંદ કરેલ પતું એક્કો છે'.
In a deck of $52$ cards, $13$ cards are spades and $4$ cards are aces.
$\therefore $ $ \mathrm{P}(\mathrm{E})=\mathrm{P}$ (the card drawn is a spade) $=\frac{13}{52}=\frac{1}{4}$
$\therefore $ $ \mathrm{P}(\mathrm{F})=\mathrm{P}$ (the card drawn is a ace) $=\frac{4}{52}=\frac{1}{13}$
In the deck of cards, only $1$ card is an ace of spades.
$ \mathrm{P}(\mathrm{EF})=\mathrm{P}$ (the card drawn is spade and an ace) $=\frac {1}{52}$
$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{1}{4} \frac{1}{13}=\frac{1}{52}=\mathrm{P}(\mathrm{EF})$
$\Rightarrow \mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\mathrm{P}(\mathrm{EF})$
Therefore, the events $\mathrm{E}$ and $\mathrm{F}$ are independent.
એક સમતોલ પાસાને એક વખત ઉછાળતાં ઉપરની બાજુએ $3$ થી મોટો પૂર્ણાક મળે તે ઘટના અને $5$ થી નાનો પૂર્ણાક મળે તે ઘટના $B$ છે. $P(A \cup B) = .....$
સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?
$E :$ ‘પસંદ કરેલ પત્તે રાજા અથવા રાણી છે”. $F : $ ‘પસંદ કરેલ પતું રાણી અથવા ગુલામ છે”.
ચકાસો કે નીચેની સંભાવનાઓ $P(A)$ અને $P(B)$ સુસંગત રીતે વ્યાખ્યાયિત છે.
$P ( A )=0.5$, $ P ( B )=0.7$, $P ( A \cap B )=0.6$
જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.
આપેલ ઘટનાઓ $A$ અને $B$ માટે $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ અને $\mathrm{P}(\mathrm{B})=p .$ આપેલ છે. જો ઘટનાઓ નિરપેક્ષ હોય તો $p$ માં શોધો.