સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?

$E :$ ‘પસંદ કરેલ પતું કાળીનું છે'. $F :$ ‘પસંદ કરેલ પતું એક્કો છે'. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In a deck of $52$ cards, $13$ cards are spades and $4$ cards are aces.

$\therefore  $ $ \mathrm{P}(\mathrm{E})=\mathrm{P}$  (the card drawn is a spade) $=\frac{13}{52}=\frac{1}{4}$

$\therefore  $ $ \mathrm{P}(\mathrm{F})=\mathrm{P}$  (the card drawn is a ace) $=\frac{4}{52}=\frac{1}{13}$

In the deck of cards, only $1$ card is an ace of spades.

$ \mathrm{P}(\mathrm{EF})=\mathrm{P}$ (the card drawn is spade and an ace) $=\frac {1}{52}$

$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{1}{4} \frac{1}{13}=\frac{1}{52}=\mathrm{P}(\mathrm{EF})$

$\Rightarrow \mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\mathrm{P}(\mathrm{EF})$

Therefore, the events $\mathrm{E}$ and $\mathrm{F}$ are independent.

Similar Questions

જો $A$,$B$ અને $C$ એ ત્રણ ઘટના એવી છે કે જેથી $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ અને  $P\left( {\bar A \cap B \cap C} \right) = 0.1$ થાય તો $P$(ઘટના $A$,$B$ અને $C$ માંથી ઓછામા ઓછા બે થાય) તેની કિમત મેળવો. 

જો $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}\,$   અને$P(A \cap B) = \frac{7}{{12}},$ , તો તેની કિમત $P\,(A' \cap B') = ........$

એક સમતોલ સિક્કા ને ઉછાળવામાં આવે છે .  જો છાપ આવે તો બે સમતોલ પાસાને ઉછાળવામાં આવે છે અને તેના પરના અંકોનો સરવાળો નોધવામાં આવે છે અને જો કાંટ આવે તો સરખી રીતે છીપેલા નવ પત્તા કે જેના પર $1, 2, 3,….., 9$ અંક લખેલા હોય તેમાથી એક પત્તું પસંદ કરી તે તેના પરનો અંક નોધવામાં આવે છે તો નોધાયેલા અંક  $7$ અથવા $8$ હોય તેની સંભાવના મેળવો.

  • [JEE MAIN 2019]

ઘટના ${\text{A, B}}$ છે   $P(A \cup B)\,\, = \,\,\frac{3}{4},\,P(A \cap B)\,\, = \,\,\frac{1}{4},\,P(A')\,\, = \,\,\frac{2}{3}$  તો ${\text{P (A' }} \cap {\text{  B)}} = ......$

વિદ્યુત યંત્રના ભાગોનું જોડાણ બે ઉપરચનાઓ $A$ અને $B$ ધરાવે છે. અગાઉની ચકાસવાની કાર્યપ્રણાલી પરથી નીચેની સંભાવનાઓ જ્ઞાત છે તેમ ધારેલ છે :

$P(A$ નિષ્ફળ જાય) $= 0.2$

$P$ (ફક્ત $B$ નિષ્ફળ જાય) $= 0.15$

$P(A $ અને $B$ નિષ્ફળ જાય) $= 0.15$

નીચેની સંભાવનાઓ શોધો :

$P(A $ એકલી નિષ્ફળ જાય)