જેની ઉપર પૂર્ણાકો $1, 2, 3$ લાલ રંગથી અને $4, 5, 6$ લીલા રંગથી લખેલ હોય તેવા પાસાને ફેંકવામાં આવે છે. પાસા પર મળતો પૂર્ણાક યુગ્મ છે તે ઘટનાને $A$ વડે તથા પાસા પરનો પૂર્ણક લાલ રંગથી લખેલ છે તે ઘટનાને $B$ વડે દર્શાવીએ, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When a die is thrown, the sample space ( $S$ ) is

$\mathrm{S}=\{1,2,3,4,5,6\}$

Let $A:$ the number is even $=\{2,4,6\}$

$\Rightarrow P(A)=\frac{3}{6}=\frac{1}{2}$

$B:$ the number is red $=\{1,2,3\}$

$\Rightarrow P(B)=\frac{3}{6}=\frac{1}{2}$

$\therefore $ $A \cap B=\{2\}$

$P(A B)=P(A \cap B)=\frac{1}{6}$

$P(A) P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq \frac{1}{6}$

$\Rightarrow $  $P(A) \cdot P(B) \neq P(A B)$

Therefore, $A$ bad $B$ are not independent.

Similar Questions

આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ અને $B$ નહિ) શોધો. 

જો $A, B, C$ એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ત્રણ ઘટનાઓ હોય, તો સાબિત કરો કે $P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$

ધારો કે $A$ અને $B$ બે નિરપેક્ષ ઘટનાઓ છે. $P(A)\,\, = \,\,\frac{1}{5},\,\,P(A\,\, \cup \,\,B)\,\, = \,\,\frac{7}{{10}}\,$   હોય તો $P(\overline B )$ બરાબર શું થાય ?

સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?

$E :$ ‘પસંદ કરેલ પતું કાળા રંગનું છે'. $F :$ ‘પસંદ કરેલ પતું રાજા છે”.

જો $A$ અને $B$ બે ઘટનાઓ છે કે જેમાં $P\,(A) = 0.3$ અને $P\,(A \cup B) = 0.8$. જો $A$ અને  $B$ એ નિરપેક્ષ ઘટનાઓ હોય,તો $P(B) = $

  • [IIT 1990]