A die marked $1,\,2,\,3$ in red and $4,\,5,\,6$ in green is tossed. Let $A$ be the event, $'$ the number is even,$'$ and $B$ be the event, 'the number is red'. Are $A$ and $B$ independent?
When a die is thrown, the sample space ( $S$ ) is
$\mathrm{S}=\{1,2,3,4,5,6\}$
Let $A:$ the number is even $=\{2,4,6\}$
$\Rightarrow P(A)=\frac{3}{6}=\frac{1}{2}$
$B:$ the number is red $=\{1,2,3\}$
$\Rightarrow P(B)=\frac{3}{6}=\frac{1}{2}$
$\therefore $ $A \cap B=\{2\}$
$P(A B)=P(A \cap B)=\frac{1}{6}$
$P(A) P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq \frac{1}{6}$
$\Rightarrow $ $P(A) \cdot P(B) \neq P(A B)$
Therefore, $A$ bad $B$ are not independent.
One card is drawn from a pack of $52$ cards. The probability that it is a queen or heart is
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted $NSS$ but not $NCC$.
In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random Find the probability that she reads neither Hindi nor English newspapers.
Let $\mathrm{E}$ and $\mathrm{F}$ be events with $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$ Are $\mathrm{E}$ and $\mathrm{F}$ independent ?
Let $A$ and $B$ be two events such that $P\,(A) = 0.3$ and $P\,(A \cup B) = 0.8$. If $A$ and $B$ are independent events, then $P(B) = $