एक पासे को तीन बार उछाला जाता है तो कम से कम एक बार विषम संख्या प्राप्त होने की प्रायिकता ज्ञात कीजिए।
Probability of getting an odd number in a single throw of a die $=\frac{3}{6}=\frac{1}{2}$
Similarly, probability of getting an even number $=\frac{3}{6}=\frac{1}{2}$
Probability of getting an even number three times $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$
Therefore, probability of getting an odd number at least once
$=1-$ probability of getting an odd number in none of the throws
$=1 -$ probability of getting an even number thrice
$=1-\frac{1}{8}$
$=\frac{7}{8}$
घटनाओं $A$ व $B$ में से कम से कम एक के घटने की प्रायिकता $0.6$ है। यदि $A$ व $B$ एक साथ घटित होती हैं जिसकी प्रायिकता $0.3$ हैं, तो $P(A') + P(B')$ का मान है
एक विद्यार्थी के अंतिम परीक्षा के अंग्रेजी और हिंदी दोनों विषयों को उत्तीर्ण करने की प्रायिकता $0.5$ है और दोनों में से कोई भी विषय उत्तीर्ण न करने की प्रायिकता $0.1$ है। यदि अंग्रेज़ी की परीक्षा उत्तीर्ण करने की प्रायिकता $0.75$ हो तो हिंदी की परीक्षा उत्तीर्ण करने की प्रायिकता क्या है ?
यदि $P(A) = P(B) = x$ तथा $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$ हो, तो $x = $
यदि $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ तथा $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ तब $P(B \cap C)$ का मान है
माना $A$ और $B$ दो स्वतंत्र घटनायें हैं। दोनों के एक साथ होने की प्रायिकता $1/6$ और दोनों के न होने की प्रायिकता $1/3$ है, तब $A$ के होने की प्रायिकता है