एक अनभिनत (unbiased) पासे को दो बार उछाला गया। मान लें $A$ घटना 'पहली उछाल पर विषम संख्या प्राप्त होना' और $B$ घटना 'द्वितीय उछाल पर विषम संख्या प्राप्त होना ' दर्शाते हैं। घटनाओं $A$ और $B$ के स्वातंत्र्य का परीक्षण कीजिए।
If all the $36$ elementary events of the experiment are considered to be equally likely, we have
$P(A)=\frac{18}{36}=\frac{1}{2}$ and $P(B)=\frac{18}{36}=\frac{1}{2}$
Also $P(A \cap B)=P($ odd number on both throws $)$
$=\frac{9}{36}=\frac{1}{4}$
Now $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
Clearly $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
Thus, $A$ and $B$ are independent events
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( A -$ नही $)$
जाँच कीजिए कि निम्न प्रायिकताएँ $P ( A )$ और $P ( B )$ युक्ति संगत ( $consistently )$ परिभाषित की गई हैं
$P ( A )=0.5, P ( B )=0.4, P ( A \cup B )=0.8$
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( B-$ नहीं)
यदि किसी घटना के अनुकूल संयोगानुपात $3 : 5$ हो, तो उसके घटित न होने की प्रायिकता है
यदि $A$ तथा $B$ घटनायें इस प्रकार हैं कि $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ तब $P(\bar A \cap B) =$