એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NSS$ ને પસંદ કર્યું છે. પરંતુ $NCC$ ને પસંદ કર્યું નથી.
Let $A$ be the event in which the selected student has opted for $NCC$ and $B$ be the event in which the selected student has opted for $NSS$.
Total number of students $=60$
Number of students who have opted for $NCC =30$
$\therefore $ $P(A)=\frac{30}{60}=\frac{1}{2}$
Number of students who have opted for $NSS =32$
$\therefore $ $P(B)=\frac{32}{60}=\frac{8}{15}$
Number of students who have opted for both $NCC$ and $NSS = 24$
$\therefore $ $P ( A$ and $B )=\frac{24}{60}=\frac{2}{5}$
The given information can be represented by a Venn diagram as
It is clear that Number of students who have opted for $NSS$ but not $NCC$
$=n(B-A)=n(B)-n(A \cap B)=32-24=8$
Thus, the probability that the selected student has opted for $NSS$ but not for $NCC$
$=\frac{8}{60}=\frac{2}{15}$
ઘટના $A$ અને $B$ છે. ઓછામાં એક ઘટના બને તેની સંભાવના $0.6,$ બન્ને ઘટના બને તેની સંભાવના $0.2$ છે. તો $P(A) + P(B)= …....$
$P(A \cup B) = P(A \cap B)$ તો જ શક્ય બને જો $P(A)$ અને $P(B)$ વચ્ચે .. . . પ્રકારનો સંબંધ બને.
$52$ પત્તામાંથી એક પત્તુ યાદચ્છિક પસંદ કરતાં તે પત્તું રાજા હોય કે ચોકટનું હોય તેની સંભાવના $…….. $છે.
ત્રણ વ્યક્તિ $P, Q$ અને $R$ એ સ્વતંત્ર રીતે એક નિશાન તકે છે . જો તેઓ નિશાન તાકી શકે તેની સંભાવના અનુક્રમે $\frac{3}{4},\frac{1}{2}$ અને $\frac{5}{8}$ હોય તો $P$ અથવા $Q$ નિશાન તાકી શકે પરંતુ $R$ તાકી ન શકે તેની સંભાવના મેળવો.
બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : અનિલ અને આશિમા બંને પૈકી કોઈ પણ પરીક્ષામાં પાસ નહિ થઈ શકે.